More Than Flowers: How to Support Pollinators in All Their Life Stages

Many pollinators are in steep decline and in dire need of protection. A black-tailed bumble bee (Bombus melanopygus) feasts on hairy honeysuckle blossom (Lonicera hispidula).
Black-tailed bumble bee (Bombus melanopygus) forages on hairy honeysuckle (Lonicera hispidula).

On the heels of National Pollinator Week — when we honor the hard-working animals who give so much, let’s remember that they need much more than flowers to survive. These fascinating creatures — from bees and beetles to butterflies and moths — face seemingly insurmountable threats, including habitat loss, the climate crisis, and pesticide use. It’s tragic and overwhelming, but there is much that each of us can do as individuals, and together we can have a tremendous influence over potential habitat in everything from tiny urban lots to community gardens to large rural expanses.

Modern landscaping practices essentially strip habitat from our yards. But there are many easy DIY habitat features that can be incorporated — or simply left in place — and they are superior to artificial supports (such as bee hotels) because they break down fairly quickly (which minimizes parasite and disease problems that come with repeated use), and better imitate the natural density of nest sites that keep pollinators healthy. 

In my Pacific Northwest yard I offer a variety of native trees, shrubs and perennials throughout, as well as a mini-meadow where locally native perennials — such as western columbine, fleabane, checker mallow, blue-eyed grass and iris — grow and buzz with life. To be certain they will return next year, I also provide adequate shelter for overwintering and nesting. I leave leaf “litter”, hollow and pithy stems, and dead wood lying around, provide water and brush and rock piles, use no chemicals, and refrain from doing any “clean up” until late spring, to prevent disturbance of overwintering adults, eggs, larvae, or pupa that may be camouflaged within nature’s debris—for example, the strikingly beautiful western tiger swallowtail butterfly may overwinter as chrysalis (pupa), which looks like a little piece of dead wood during that time. 

At home, here are a dozen easy things we can do to support a variety of pollinators, from bees, moths, and butterflies to beetles and flies

~ Leave parts of your garden a little “wild.” Undisturbed shelter and nesting locations are absolutely essential, and gardens that are a bit messy and provide brush and log piles, mounds of rounded stones, as well as patches of bare, well-drained, undisturbed soil will help.

Put away that leaf blower and allow fallen leaves, twigs and bark to remain undisturbed on the ground so that butterflies and moths can make it through the winter either as eggs, caterpillars, chrysalises, or adults, and so that bees such as queen bumble bees can slumber peacefully under a leafy blanket; leave a very light layer on any lawn you have, too. Besides pollinators, many other wild ones live or overwinter in leaves, including beetles, spiders, snails, and worms, all of which are beneficial and/or support the birds, small mammals, reptiles and amphibians who need them for food. An added benefit is that detritus from trees and shrubs insulate plants’ roots, suppress weeds and retain moisture just as well as wood chips or other mulches (that may contain invasive species) but allow for ground-nesting.

For the numerous species of native ground-nesting bees (70% of bees nest in the ground in burrows), supply a generous amount of undisturbed and bare soil. Avoid tillage and anything that prevents access to soil, like plastic mulch, landscape fabric, or thick layers of mulch, including wood chips and bark mulch. Natural fallen (whole) leaves, small pebbles, and light layers of compost are fine. If you must remove some leaves in the spring, wait until late spring to prevent disturbance to species who emerge fairly late.

Nest sites for the other bees that nest aboveground — in stems or tunnels within decaying wood — can be augmented by placing hollow or pithy stems, or downed wood (with or without dead-ended, narrow holes drilled into them) on or above the ground. Bumble bees typically nest in pre-existing cavities such as bird nest boxes, abandoned rodent burrows, unmortared rock wall crannies, hollow logs, beneath bunch grasses, etc. We once had a bumble nest in a small pile of lawn that had been removed and was decomposing upside-down.

In perennial beds, leave flower stalks, branches (and seed heads, to provide food) standing over the winter. In early spring, dead flower stalks may be cut back to create cavity nest sites just before the first bees emerge; naturally-occurring open stems should be left in place. Cut hollow or pithy stalks at a variety of heights, about one to two feet above the ground to supply vertical nesting opportunities for insects of various sizes. You can also bundle together additional cut stalks and place them, vertically or horizontally, in a sheltered spot to create additional nesting opportunities. Female bees will find them and create individual nests, each supplied with pollen/nectar balls upon which larvae will feed. As summer progresses, new growth hides the stems which contain the developing larvae/pupa. Adults hibernate during winter and emerge the following spring and the process starts all over.

Deer browsing may create nesting sites for some cavity nesters and shrubs may be pruned (just before the shrubs break dormancy) to mimic it. However, before cutting any branches, always be certain that no birds are using the shrub for nesting.

~ Provide clean water.
Pollinators and other insects need a shallow source of clean water where they can drink and find water to create their nests. Fill a plate or shallow dish with clean pea gravel and keep it moist and near flowering plants.


~ Moisten sand or loose soil to help adult butterflies. Butterflies and moths ingest liquids like flower nectar from which they obtain sugars, minerals, and other nutrients. But they also need to “sip” from muddy or sandy puddles, sap, decaying fruit, sweaty humans, even manure piles to hydrate themselves and obtain dissolved minerals, including salt. Such minerals are vital for many physiological functions, including reproduction: Males often transfer “nuptial gifts” of sodium and amino acids to the female during mating (along with other donations). Before you say, “He shouldn’t have,” consider how evolution toward generosity might generate rewards: More gifts mean more nutrition and better egg survival. To assist, add a dash of salt to containers or areas of moist sand or soil, to be sure they get what they need.

Butterflies and moths often obtain nutrients and moisture in mud puddles, but they’re also attracted to perspiration on skin, like this green comma butterfly.
Butterflies and moths often obtain nutrients and moisture in mud puddles, but they’re also attracted to perspiration on skin, like this green comma butterfly.


~ Steer clear of pesticides. Even those approved for organic gardening, such as rotenone, are harmful. Systemic insecticides like neonicotinoids (a class of insecticides such as imidacloprid, acetamiprid, clothianidin, dinotefuran, nithiazine, thiacloprid and thiamethoxam that affect insects’ central nervous systems), are absorbed by plants and produce toxic nectar and pollen. Studies show that residues may persist in woody plants for up to six years following application and may persist in soil for several years. Herbicides and fungicides can also be harmful. In a healthy, balanced system there should be no need to resort to poisons.

~ Allow some “pests.”
Some pollinators’ young feed on insects that we consider pests, so don’t be too quick to destroy them. Many syrphid flies, which are great pollinators, lay their eggs in or close to aphid colonies, so that their legless and blind larvae can feed on them. Highly efficient, one larva may eat hundreds of aphids. They also may feed on scale insects or thrips. When mature, larvae go to the soil to transform into pupae and eventually into adult flies. Their life cycle takes 2 to 4 weeks to complete. Other syrphid fly larvae are either (1) scavengers that tidy up ant, bee, and wasp nests, (2) feeders of plant material, tree sap, and fungi, or (3) decomposers that feed on decaying organic matter, so yet another reason to not disturb soil too much and to leave plant debris where it falls to the soil.

Syrphid fly laying eggs on an aphid-infested kale plant.

~ Grow a variety of plants that are native to your area, and you won’t need to think too much about whether you will provide food for pollinators. Studies show that native plants are four times more alluring to pollinators than exotic flowers.

Small female mining bee (Andrea sp.) gathers pollen for her young on showy fleabane (Erigeron specious).
Small female mining bee (Andrena sp.) gathers pollen for her young on showy fleabane (Erigeron speciosus).

Got lawn? Whether you have a large or small lot, consider replacing or minimizing turf with native grasses wildflowers, and perennials (and mosses in shady areas). Add native shrubs and trees to provide cover and protection, especially for ground-nesting bees, as well as the fallen debris and brush/log/rock piles mentioned above.

~ Grow butterfly host plants.
To become adults, butterflies in earlier life stages — egg, larva, chrysalis — require host plants that provide habitat and food. Find out which butterflies frequent your area, and grow the plants that provide for all their stages. In the Northwest, check out this handy guide: Create a Butterfly Garden (OSU).

~ Provide nectar and pollen in a variety of flower colors, shapes, and sizes for pollinators with different needs. Flower nectar, produced in glandular organs called nectaries, is high in carbohydrates and serves to attract pollinators to distribute plants’ pollen (and in some cases, attracts protectors like parasitoids and ants—which also pollinate to a small extent—against herbivores that may be problematic). Pollen is a highly nutritious blend of proteins, lipids and carbohydrates. We’ve been taught that bees tend to prefer yellow, purple, and blue flowers — anything but red, which they can’t see — while hummingbirds can see and do use reds (although one study suggests that their preference may not be innate, but rather they choose them since bees don’t). While this is true, a 2016 research study shows that bumblebees (and probably other pollinators) choose a plant for the nutritional quality of its pollen, not only its color; they need pollen with a high protein to lipid ratio (which makes sense, since pollen is mainly used to feed their growing larvae). And, research from UC-Davis suggests that pollinators choose among flowers based on the microbes within those flowers, such as yeasts that are “commonly found in flower nectar and … [are] thought to hitch a ride on pollinators to travel from one flower to the next. Yeasts’ scent production may help attract pollinators, which then help the yeast disperse among flowers.” But flower shape and size also matter: Butterflies need clusters of short, tubular flowers with a wide landing pad, such as yarrow (Achellia millefolium occidentalis), various native bees need different types of flowers (generally shallow), while hummingbirds like relatively large, tubular, or urn-shaped flowers.

Syrphid fly (Scavea pyrastri) on western bleeding heart (Dicentra formosa).
A syrphid fly (Scavea pyrastri) on western bleeding heart (Dicentra formosa).


~ Keep it blooming.
From spring through fall, something should always be in bloom, preferably several species at a time. In the Pacific Northwest, early spring flowers, like those of osoberry (Oemleria cerasiformis), willows (Salix spp.), and red-flowering currant (Ribes sanguineum), are particularly important to bees emerging from hibernation, while late-season nectar sources such as asters (Symphyotrichum spp. or Aster spp.) help bees that overwinter as adults get through the winter. Both early and late forage may aid in bees’ reproduction. Of course, mid-summer flowers are important, too! Many native species bloom for extended periods, such as charming foamflower (Tiarella trifoliata), which may produce flowers from spring to late summer, white spiraea (Spiraea lucida), and showy fleabane (Erigeron speciosus). Learn when plants bloom to be sure you’ve got it covered, and aim for some overlap in bloom times. Remember that trees and shrubs, as well as perennials and annuals, can provide nectar and pollen. Arrange smaller plants in irregular clumps or drifts so that plants are next to or within a few feet of another of its kind, to supply enough forage and to make it easy for pollinators to find them. Provide at least three different plant species per season of bloom whenever possible.

~ Forgo hybridized and “double” flowers. When choosing nonnative plants, keep in mind that hybridized varieties may lack sufficient pollen nutrition. Pollens vary in protein content, and bees and other pollen-consuming insects need a wide variety to fulfill their protein requirement. Research also suggests that some commonly used garden plants, especially those hybridized for features valued by gardeners, like disease-resistance or flower size or color, may not provide sufficient or appropriate nutrients in nectar, needed for carbohydrates. Frilly double-flowered varieties (those with extra petals that make a flower look inflated and flouncy) are usually inaccessible to pollinators simply because they can’t get through the mass of petals to the nectaries. It’s a bit sad to watch a bumblebee, desperately trying to get inside an overly dressed flower, fly away without food.

~ Turn roadsides native. Studies show that native pollinators are much more prevalent in native stretches of roadside habitat — often the only connection between patches of remnant habitat — than weedy, nonnative stretches. If you own rural land, plant natives near your roadside and mow it very infrequently (from the inside, out) to prolong bloom and prevent harm to creatures who may be taking cover within it.

Other things we can do for pollinators include participating in “citizen science” projects that seek input from gardeners, and advocating for an end to pesticide use in our parks and communities.

Trichodes ornatus
This beetle (Trichomes ornatus), on wild buckwheat (Eriogonum sp.), is a member of a very diverse group of pollinators that are especially important in areas where bees aren’t common.



© 2017 Eileen M. Stark  |  updated 2020

Adapted from content originally published in my book, Real Gardens Grow Natives: Design, Plant, & Enjoy a Healthy Northwest Garden.

 

Pacific Northwest Native Plant Profile: Oregon grape (Mahonia species)

Mahonia aquifolium (landscape)

Oregon grape plants are colorful western shrubs with year round appeal and chances are there’s a species that will fit into your Pacific Northwest landscape. Named after Bernard McMahon, an Irish-born American nurseryman, the genus Mahonia is a member of the barberry family (Berberidaceae). But you may also see Oregon grape classified as Berberis, indicative of the extensive debate among botanists on how to classify this species. Although included in the large genus Berberis (an alteration of the Medieval Latin barberis, or barberry, from Arabic barbārīs), Oregon grape is still known as Mahonia in most commercial horticulture, so either is correct (at least as far as I’m concerned!). 

Wildlife value
Like all native plants grown where they evolved, Oregon grape plants are extremely beneficial and attractive to wildlife. Flowers provide for pollinators like bees, moths, butterflies, and hummingbirds, while the fruits, which may remain on the plant into winter, are favorites among birds such as towhees, robins, and waxwings, as well as mammals. Some butterfly and moth species rely on Oregon grape plants to host their larvae, including the brown elfin butterfly. Year round cover may support arthropods, birds, reptiles, amphibians and small mammals.

Cedar waxwings feed on Cascade Oregon grape (M. nervosa). ©Eileen M Stark


Three species
You can’t go wrong with tall Oregon grape (Mahonia aquifolium) for an evergreen, erosion-controlling, woody-stemmed, slightly prickly screen, barrier or woodland border, as part of an unpruned hedgerow, or as an accent plant (pictured top). Aquifolium means “water leaf,” likely named after the lustrous, wet-looking surface of the plant’s leathery leaves that Lewis and Clark first noticed near the Columbia River. Introduced to Britain in the 1820s as an expensive ornamental, its holly-like, pinnately compound leaves begin a bronzy coppery color, then mature to a deep green, with orange, red, or purple highlights in very sunny or cold conditions. Dense clusters of showy golden-yellow, lightly fragrant flowers appear in early to late spring. Ripening in late summer, the dusty-blue, round to oblong berries are slightly reminiscent of grapes, hence the name. Although they are tart and have large seeds, they are suitable for jams and jellies (with beaucoup sweetener) and have traditional medicinal properties, as do the roots. 

Tall Oregon grape’s range includes most of western Washington and Oregon, parts of Idaho and much of California, as well as northeastern Washington and southern B.C. It can handle nearly full sun to shade, but being a woodland species often found growing in somewhat open forests, it prefers some shade (although very deep shade will result in fewer flowers and fruit). Though it does best in slightly moist, acidic, well-drained soil, it’s an undemanding plant that can handle many soil types and drought when established. However, it is intolerant of poorly drained soils and high water tables. Since it will gradually spread into a thicket via tough rhizomes, place it away from pathways and allow it to eventually spread into a wildlife protective clump. If you don’t plan for its growth or it somehow gets out of hand, roots may be occasionally pruned and stems may be cut (as seldom as possible) nearly to the base for renewal. Arching stems typically reach four to eight feet in height, sometimes on the lower end in garden situations.

Try growing it with trees and shrubs such as Douglas-fir, western hemlock, ponderosa pine, vine maple, Indian plum, oceanspray, serviceberry, salal, and smaller companions like sword fern, western columbine, fleabane, delphinium, and others.    

Cascade (or long leaved) Oregon grape (Mahonia nervosa) is another handsome plant, but this one grows only up to about three feet tall,Mahonia nervosa often lacks shiny leaves, and very slowly spreads into a lovely, evergreen, soil-stabilizing ground cover over many years. Nervosa means “having distinct veins or nerves” and refers to the leaf venation. Showy, fragrant, erect, pale to bright yellow flowering stalks, which put on their show in early to mid spring, are trailed by the familiar deep blue berries in late summer to fall. 

This species naturally occurs in moist to dry forests, at low to mid elevations mainly west of the Cascades including Vancouver Island, often with oceanspray, osoberry, vine maple, sword fern, salal, and oxalis, but it’s also an associate of the drier Oregon white oak and madrone habitats. It prefers shade to part shade in moist, acidic soil, but can handle drought in cool areas when established. It’s a nice substitute for invasive English ivy.

Low (or creeping) Oregon grape (Mahonia repens) is an evergreen ground cover that grows one to two feet tall and four to six feet wide. It has a large range in the west; in Washington and Oregon it is mainly found east of the Cascades growing in conifer forests, so it does well in dry, shady conditions but can take some sun. Its leaves (pictured below) may be glossy or dull, tend to be rounder and—though toothed—feel less prickly than tall Oregon grape. In nature, where its range sometimes overlaps with tall Oregon grape (and in garden situations where we often place plants that Mahonia repensdon’t belong together), it may hybridize with its cousin and produce plants that are a bit taller than the true species. 

 

 

 

 

 

 

Propagation 
All Oregon grape species are best grown from seed (without drying them), with at least three months of cold stratification outdoors (wet, pre-chilled seed may also be planted in spring). Seed germination is reportedly erratic and unpredictable. If you have established plants you may find their progeny beneath them or elsewhere, as seeds are dispersed by birds and mammals; anything but very small transplants may not survive. Cuttings may also be tried in late fall. 

As always, buy plants propagated from source material that originated as close as possible to your site. Using such “local genotypes” helps ensure that you get plants that are well adapted to your area and that genetic diversity—which helps plants (and animals) adapt to changing conditions—is preserved. Ask growers and nurseries about their sources if you’re unsure.

Do you have Oregon grape but aren’t sure which species you have? This page has a handy leaf comparison (see photo on lower right column).
 
 
© 2019 Eileen M. Stark

To leave a comment, click on post’s title

Pacific Northwest Native Plant Profile: Pacific Red Elderberry (Sambucus racemosa var. racemosa)

Sambus racemosa

Respect your elders! Words of wisdom to be sure, and I can’t help but apply them to elderberry shrubs as well. Long regarded as weedy, native elderberry approval ratings are inching up due to their ecological, medicinal, and ornamental charms.

Besides having good looks and high wildlife value, the botanical name given to this deciduous shrub attests to centuries of use by humans. The genus name, Sambucus, comes from Latin (sambūcus), from Ancient Greek σαμβύκη (sambúkē, “sambuca”), and ultimately from Aramaic ܣܐܒܒܥܚܐ‎ (sabbekha). It originates from the plant’s association with an ancient musical wind instrument of Asian origin, known as the sambuca, made from the branches of a species of elderberry. According to Wiccan lore, it was used to summon spirits. The epithet of the Pacific Northwest’s red elderberry — racemosa — refers to its unbranched inflorescence (a raceme) with multiple short-stalked flowers. The common name, elder or elderberry, is thought to come from the the Anglo-saxon aeld, meaning fire, since the hollow stems were used as bellows to blow air into the center of a fire (but don’t you dare place elder wood, also called “Witch-wood,” in the fire or it will cause it to die out, according to The Wicca Garden by Gerina Dunwich).

Most elderberry species are native to the northern hemisphere, but no matter where they grow, they’ve been used in cooking, in the making of dye or ink, and as medicine. According to folklore, elder is said to ward off and cure disease and offer protection from lightening, saddle sores and all forms of evil. As far as consuming elderberries, they are reportedly highly nutritious and not toxic when fully ripe. However, I suggest erring on the side of caution and cooking them first since unripe, bitter-tasting fruit may cause stomach upset. Cooked berries (with seeds strained out) are tart but can be made into wine, jelly, preserves, syrups, or sauces. Seeds, roots, flowers, green fruit pulp, and leaves create cyanide-producing glycosides. 

Classification
There’s been quite a bit of bickering and confusion in the literature over the classification of Sambucus species. Historically, Sambucus racemosa (native to Europe and Asia) was commonly called European red elder, while the very similar North American native Sambucus pubens (syn S. racemosa var. pubens), native to eastern North America, was known colloquially as American red elder. Some authorities have now grouped both of these red elders together under the name of Sambucus racemosa, while others have included several former species, S. callicarpa and S. pubens, as part of the subspecies Sambucus racemosa var. racemosa, which is native to the Pacific coast states. The genus Sambucus was previously placed in the honeysuckle family (Caprifoliaceae) but recently was reclassified as a member of the small Adoxaceae family, which includes Viburnum.

Sambucus racemoca
How it grows
A large, handsome, deciduous, upright perennial shrub, Pacific red elderberry rises from several tightly clustered basal stems. Pinnately compound, lance-shaped leaves with downy undersides that may grow to six inches long are striking in themselves but take a back seat when lacy, conical to egg-shaped panicles of small creamy-white fragrant flowers steal the show in late spring to early summer. A few months later, the pea-sized, berrylike fruits, known as drupes, ripen to a brilliant red.

In the wild, it may grow up to 18 feet in height and about 8 to 10 feet in width, but may stay smaller in garden situations. Though it shows a preference for partial shade, it will tolerate full sun or full shade, though the latter will cause it to look straggly as its branches reach for more light. It is moderately long-lived; upright branches become more arched with age. 

In the Pacific Northwest, red elderberry naturally occurs in moist to mesic meadows, grasslands, riparian areas, forests, canyons, ditches, and disturbed places at low to middle elevations from southern Alaska into California. In Washington and Oregon it mainly occurs west of the Cascades. 

Sambucus nigra ssp. caerulea Blue elderberry Wallowas

Fruits of the blue elderberry, Sambucus nigra ssp. caerulea. “Caerulea” means blue.

Another elderberry, blue elderberry (Sambucus nigra ssp. caerulea), typically grows larger (up to 30 feet tall) and develops bluish-purple fruits, often with a whitish coating, that are immensely important for wildlife during late summer and fall. It occurs widely within most western states in open forests and riparian areas and may be found on slopes where it helps control erosion. Plants subjected to drought may develop interesting gnarly branches and stockier trunks with age. 

Wildlife value
Elderberry shrubs provide food, cover, and nesting provisions for many wildlife species. Flowers provide nectar and pollen for butterflies, bees, hummingbirds and other pollinators. Fruits (when fully ripe) are eaten by many mammals and birds; red elderberries are the main ingredient of band-tailed pigeons’ summer diet. Some native birds and bee species use the plants for nest structure and the leaves may be used for nest material. Both red and blue elderberry are hosts for the caterpillars of the echo azure butterfly (and possibly other lepidoptera). 

Try it at home
Since elderberry plants are typically fast growing, they’re perfect for young gardens, where they can provide screening and structure overnight (well, almost). Although pruning them back can usually be done without killing them, they’re best left to do what nature intended, so be sure you give them enough space! (If you find yourself with saw in hand, remember this superstition: You must apologize three times to an elder when pruning it or cutting it down; otherwise bad luck will befall you.) 

With ample space, elderberry shrubs make stunning focal points, living screens, shrub borders or wide hedges, and provide connectivity between low perennials and tall trees, as well as erosion control along the edges of streams and ponds. Plant several to encourage more flowers and fruit.

They’re easy to grow when a few guidelines are followed. Sun: Partial shade to full sun; the more sun, the greater the flower and fruit production. Soil: Though the perfect conditions would be moist (but well-drained) rich soil near a babbling brook, elderberries can handle dryer conditions and clay soil (not sandy soil). Though they thrive in regularly irrigated areas, once fully established they are drought tolerant, but appreciate an occasional deep drink prior to and during the Pacific Northwest’s dry summers.

Grab a partner
Growing native plants with the associated species they evolved with is best, so in the Pacific Northwest consider growing red elderberry with species such as Douglas-fir, vine maple, red-twig dogwood, osoberry, thimbleberry, orange honeysuckle, goat’s beard,  fairybells, and sword and deer ferns.

Finally, there are numerous elderberry cultivars that have been developed by plant breeders looking for certain characteristics that can be maintained through propagation, such as plant size or flower or leaf characteristics. Cultivars are not natural varieties found in nature, and although some do provide well for wildlife, studies show that many aren’t as attractive and useful; their pollen, nectar and/or fruits may be deficient in nutrients, which is especially problematic for migrating birds who need high quality nutrients that provide lots of energy. And some cultivars may actually lack nectar, or their flowers may be so complex that pollinators can’t even use them. A recent study on pollinators found that the more manipulated the cultivars became, the less attractive they were to pollinators. Moreover, genetic diversity is the foundation of biodiversity, which is the foundation for healthy ecosystems. True native species provide genetic diversity; native cultivars do not.


NOTE:
An unknown species of elderberry borer has been found on elderberry plants in Washington State. Although it’s not clear from this article whether it could be a native species or an imported one, it offers information on how to monitor and manage if necessary. If the insect turns out to be non-native, here is yet another reason to buy native, locally grown plants, rather than purchasing natives or cultivars from who-knows-where that could bring in unwanted and problematic insects. 

© 2018 Eileen M. Stark 

Pacific Northwest Native Plant Profile: Pacific Madrone (Arbutus menziesii)

Arbutus menziesii bark

Although it looks exotic, Pacific madrone — a beautiful broadleaf evergreen tree with a captivating and distinctive presence that transforms with the seasons — is endemic to the Pacific coast. Its exquisite attributes — fragrant flower clusters, brilliant berries, glossy leaves, twisting branches, rounded crown, and rich cinnamon-red bark that peels from a satin-smooth trunk — please all of our senses. And for the wild ones attracted to this unique gem, its ecological gifts never disappoint.

Madrona (after madroño, the Spanish name for a Mediterranean “strawberry tree”) is the name admirers in Washington give this member of the Ericaceae (heath) family, while those in California and Oregon call it madrone or Pacific madrone. British Columbians simply use the Latin genus name, Arbutus. (The epitaph, menziesii, is named after the naturalist Archibald Menzies, a naturalist for the Vancouver Expedition that explored the Puget Sound region in 1792.)

How it grows
Pacific madrone is a large, long-lived tree that naturally occurs in a climate with mild, wet winters and dry summers, although rainfall varies substantially within its range, from the east coast of Vancouver Island in British Columbia, southward through Washington and Oregon (west of the Cascades) to San Diego County. It is often found on rocky soils and other coarse soils that retain little moisture, including the dry foothills, wooded slopes and canyons of parts of California (at low to mid-elevations); within coastal redwood and mixed-evergreen forests of California and Oregon; on dry ridge tops and slopes at low to mid-elevations along the east side of the Coast Ranges and in the Siskiyou Mountains; on warm, dry, lowland sites west of the Cascades (within Douglas-fir/western hemlock forests or Oregon white oak or tan oak woodlands); and — furthest north — near sea level on rocky bluffs and low elevation slopes. Within mixed hardwood forests — that may or may not have an overstory of conifers — its tolerance to shade varies with age. While madrone seedlings do best in partial shade and young trees can handle quite a bit of shade, tolerance decreases as trees age and for those at the northern end of this species’ range. Older trees need good light to survive and often can be found  growing at an angle, twistily and desperately reaching for the sunlight that helps ensure a long life.

Wildlife value
Wild ones are drawn like a magnet to madrone trees year round. In springtime, lovely creamy white, waxy, urn-shaped blossoms provide nectar for hummingbirds, native bees, and other pollinators.

Arbutus menziesii in flower

 

Clusters of bright red berries — that ripen in autumn and may persist into early winter — feed many bird and mammal species, including American robins, varied thrushes, band-tailed pigeons, cedar waxwings, northern flickers, quail, raccoons,  squirrels, mule deer, and bears.

Arbutus menziesii (fruit)
Habitat is provided for a variety of insects, including echo blue and brown elfin butterfly caterpillars who nibble on leaves and in turn provide dinner for insectivorous birds. Shiny, leathery leaves generally remain on branches for two years, after which they turn from vivid green to burnt orange and settle to the ground where they provide a natural mulch that protects soil microorganisms and little ground-dwelling creatures. Lofty roosting and nesting habitat is also supplied, and live trees with rotting wood offer cavities for insects as well as birds that nest in trees, such as woodpeckers and chickadees. Dead and dying trees provide even more dead wood for cavity nesters and the silent decomposers that function as nature’s recyclers.

Conservation
Unlike other trees, madrone’s fine roots have adapted to search deeply into rock fractures for stored water or “rock moisture,” making it an important plant for stabilizing slopes and cliffs and preventing landslides. In addition, it’s a valuable component of many vegetation types; for example, in mixed conifer forests like Washington’s Coast Range ecoregion (Douglas-fir/western hemlock/madrone), it provides a mid-canopy story, essential for the structural diversity of the forest.

It ought to be preserved for its own sake, for the wildlife that use it, for the ecosystems of which it’s an indelible part, and, needless to say, for those of us who revere its spectacular beauty.

Tragically, the species is currently in decline throughout most of its range, for several reasons. First, sprawling development in its native habitat has stolen many mature specimens. Though tough and drought tolerant (or more precisely, drought dependent), its roots are extremely sensitive to drainage changes, compaction, grade alteration, and other soil disturbance. Because madrone belongs and successfully grows in regional arid soil conditions that many trees cannot, landowners and developers ought to protect and save this tree at all costs.

Under natural conditions, madrone depends on intermittent fires that limit the conifer overstory (typically Douglas-fir trees). Older madrone trees can survive fire and will sprout quickly and profusely afterwards due to carbohydrate reserves within existing roots. In addition, their fruit produces many seeds, which sprout on exposed soil readily after fire. But when humans suppress and prevent natural fires, the prolonged absence of fire and consequential shade—especially on moister sites—may cause madrone trees to die.

Death or damage may be also caused by several pathogens, including a foliar fungus (Nattrassia mangiferae), commonly called “madrone canker,” that reproduces via spores and causes dieback, blackening of branches, and cankers that may spread to the trunk. A root rot, Heterobasidium annosum, can also cause serious damage. Unlike fire, “disease decreases starch accumulation in the root burl, so that declining trees are less able to resprout after the aboveground portion of the tree is killed by disease.” But prevention is possible: Susceptibility to disease is exacerbated by unnatural environmental stresses such as regular summer irrigation and the use of fungicides and fertilizers. Essentially, spores are carried by water, fungicides kill beneficial mycorrhizal fungi (symbiotic associations between the roots of most plants and fungi, which protect roots from pathogens), and studies suggest that increased soil nitrogen disrupts the mycorrhizal associations between beneficial fungi and tree roots, which in turn reduce the supply of micronutrients and water to trees, thereby increasing susceptibility to disease. Madrone trees host a large number of types of mycorrhizal fungi and have been called “a major hub of mycorrhizal fungal diversity and connectivity in mixed evergreen forests” that play a large role in forest regeneration by promoting resilience to disturbance below ground.

Madrone is also affected to a small extent by sudden oak death, a disease caused by a water-borne, fungus-like pathogen, Phytophthora ramorum, which arrived in the U.S. via live plant imports of exotic ornamentals to nurseries; it is increasingly spread by human actions, including climate chaos.

Try it at home
Despite all these threats, a madrone in the wild can live hundreds of years and may grow very large — over 100 feet tall — although in cultivation they rarely exceed 50 feet after many decades. Young trees often grow fast (up to several feet per year), while older trees typically grow at a much slower pace. In the southern, drier and warmer part of its range it grows more slowly and stays smaller.

Supplemental water after establishment is highly detrimental: Madrone cannot tolerate slow drainage, standing water, or regular irrigation during summer, which makes it susceptible to disease (as do fertilizer applications). While it has a bad reputation for being difficult to establish and isn’t for the fussy gardener, knowing what this tree needs and cannot tolerate will help ensure success. In my experience, there are seven essentials to successfully growing this tree:

1. Figure out if it historically occurred in your area. Though it’s not absolutely essential that this species likely grew in your immediate area 200+ years ago — especially since much change has occurred since then — because this tree can’t just be stuck in the ground anywhere, look to nearby natural areas to see if it might have naturally occurring relatives nearby in similar soil. In its northern range, it’s usually found growing on soils derived from glacial sands or till and gravels, while in the southern and middle parts it reportedly grows on soils derived from a variety of materials.

2. Be sure your site has the right conditions: Fast-draining, non-compacted, slightly acidic soil (pH a little less than 7), and a bright location with at least a half day of sun in northerly locations. However, seedlings need partial shade to establish, so if you have mostly sun, shield them from hot afternoon rays until well established. Site plants on a slope or area that’s elevated above the surrounding area to facilitate drainage. In my yard I tried twice to grow one-foot-tall saplings in the lowest part of my yard with sad results, despite digging in extra small rocks and gravel to increase drainage. My third attempt, which I grew myself from seed, I planted atop a short, south-facing slope, again with extra rocks and gravel. I believe that the increased drainage was what was needed; however, the seedling was also very small — only three inches tall! — so that also may have helped. Note: If you live in a very warm, dry area (such as parts of California) be sure to plant this tree on a north-facing slope, rather than in hot, direct sunlight.

3. Start with very small saplings, no more than a foot tall, as older trees do not transplant well. Once they “take,” however, young trees grow quite fast (in my yard, over a foot a year). 

4. Buy plants propagated from source material that originated as close as possible to your site. Using such “local genotypes”  helps ensure that you get plants that are well adapted to your area and preserves the genetic diversity that helps plants (and animals) adapt to changing conditions. Ask growers and nurseries about their sources if you’re unsure.

5. Plant saplings in the fall, just as winter rains begin, since they establish best when they can establish roots first, then put on aboveground biomass. You can plant them in the spring, but you’ll end up worrying about how much or how often to water; during the moist days of autumn you can just let nature decide. Do not add large amounts of organic matter into the soil that could inhibit the moisture-seeking roots from penetrating to mineral soil, and do not add fertilizers that can disrupt the mycorrhizal associations between beneficial fungi and roots. Never apply fungicides or other pesticides. If you have them, add a shallow layer of acidic Douglas-fir needles since they naturally grow near madrones.

6. Give them space. To allow them to get to their full and most beautiful form, plant them at least 20 feet apart and at least 25 feet away from tall trees, especially conifers that produce deep shade. Also try to minimize soil compaction, which can be detrimental.

7. Irrigate sparingly, and preferably only during the first summer or two. During my little tree’s first spring and summer it was unusually warm and dry, and I noticed some wilting of leaves on especially warm days. I carefully (and nervously!) watered it with tepid tap water (or rain water I had collected) in the mornings around its base and outwards a few feet, keeping the leaves and stem completely dry. I did this only a couple of times a week when heat was predicted, and by the end of the summer it was in fine shape and had grown well over a foot in height. During the second summer I left it on its own, and when no wilting of leaves occurred it became clear that the little tree was self-sufficient. After another foot of growth was added, I was able to fully exhale. Sometimes a little wilting of leaves isn’t serious: when cooler nighttime temperatures return the tree may bounce back, but you’ll have to be the judge at your particular site.

Baby madrone

Baby Madrone, just 4 months after planting as a 3-inch-tall sapling. [Update, 2024: At around 9 years of age, Ms. Madrone is now 15 feet tall.]

 

 
Grab a partner
It’s best to match madrones with other species that are compatible below ground—those that have similar needs and mycorrhizal associations and that would naturally occur together in nature (if you already have some non-natives that you want to keep, be sure not to grow any that need summer irrigation nearby). Which native “associated species” you choose depends on what part of the region you live in.

Madrone most commonly rubs shoulders with mixed-hardwood tree species that often have some conifer overstory (without completely shading them).  A member of the Douglas-fir/tanoak forest, madrone makes up the secondary canopy, while Douglas-fir (Pseudotsuga menziesii) with tanoak (Lithocarpus densiflorus) typically create an overstory. Less commonly, madrone mingles with coast redwood (Sequoia sempervirens) along the northern California and southern Oregon coast, and with western hemlock (Tsuga heterophylla), Oregon white oak (Quercus garryana var. garryana), and Pacific ponderosa pine (Pinus ponderosa var. ponderosa) throughout much of its range. Washington’s San Juan Islands’ open woodlands support madrone with Douglas-fir and fescue (Festuca spp.), as well as other species such as lodgepole pine (Pinus contorta), Oregon white oak (Quercus garryana), and Rocky Mountain juniper (Juniperus scopulorum). In British Columbia, Pacific madrone grows alongside lodgepole pine. Other tree species associated with madrone include sugar pine, white fir, California black oak, giant chinquapin, bigleaf maple, bitter cherry and California laurel, according to the U.S. Forest Service. Small trees/large shrubs commonly associated include vine maple, black hawthorn, red-twig dogwood, willow, hazelnut, and red elderberry. Smaller shrub associates include manzanitas, Oregon grape, ceanothus, salal, oceanspray, poison-oak, gooseberry, wood rose, snowberry, huckleberry, and thimbleberry.

A. menziesii with oaks

Madrone mingles with Oregon white oak, aka Garry oak (Quercus garryana), in parts of its range.

 

Propagation
Pacific madrone are fairly easy to grow from seed. Collect fruit soon after it ripens, generally early to mid-fall. Because one berry can have up to 20 seeds, you won’t need more than one if you just want to grow a few trees.

Separate the seeds from the pulp of a ripe, red berry (if it has dried, soak it overnight to help release the seeds from the pulp). Place seeds in a small bowl of water for 15-20 minutes; discard those that float and allow those that sink to dry in a cool place out of sunlight. Dry seeds may be viable for a couple of years if stored properly in a cold, dry place. Place seeds on top of a fine seedling mix in autumn, either in a pot outdoors or in the soil where you want a tree to grow, and cover just slightly. I like to grow them in pots so I have a little more control, but I’ve had success both ways. If you choose to use pots, keep them moist but not wet, and keep them away from slugs and snails.

Madrone seeds reportedly are able to maintain dormancy for long periods (“scores of years”) in the soil, but when conditions are just right — cold but above-freezing temperatures and adequate moisture — dormancy is broken in late winter/early spring after cold stratification has weakened the seed coat. At that point pots should be moved into a somewhat warm (if possible), bright location, but with little direct sunlight—seedlings establish best in partial shade and will grow fairly slowly. Keep them moist, but not saturated. After they have developed their second or third set of true leaves they may be moved to bigger pots with fast-draining soil (I like to use a mix of sterilized potting soil and small gravel), handling them by their expendable first set of leaves, not their delicate stems. Water them when the top inch of soil is dry; I find it’s hard to overwater with fast draining soil, but do give them time to dry out slightly. Plant them out when they’re 3 to 10 inches tall, preferably in autumn, in the conditions described above. Don’t attempt to relocate them.

 

© 2017 Eileen M. Stark

To leave a comment, click on post’s title

Pacific Northwest Native Plant Profile: Broad-leaved penstemon (Penstemon ovatus)

Anna on Penstemon ovatus
Growing penstemons usually requires a valiant effort to mimic wild conditions
by creating rock gardens complete with crevices that these beautiful plants’ roots can inch their way into. Most species will suffer without well-aerated, quick draining soil, and can’t live with frequent summer irrigation. Unless you reside where the soil is naturally rocky or gravelly, providing fast drainage in the Pacific Northwest can be a bit challenging. But wait! Penstemon ovatus likes and needs moisture and will usually let you manage with whatever soil you have, providing it drains well and contains a fair amount of organic matter.

Nicknamed ‘broad-leaved’ or ‘egg-leaf’ penstemon, it’s a great asset to a Pacific Northwest garden. Long-lived, upright, and nicely proportioned, it grows from a woody base with glossy, deep green, spade-shaped leaves. When in flower—typically May and June—the plants rise up two to three feet above ground. Speaking of flowers, they are gorgeous: Small (15 – 20 mm) but many, and arranged in whorls on fairly tall inflorescences, they are a brilliant blue that melds into violet and pink.

How it grows
Hardy to Zone 4, this perennial is native to parts  of the Northwest (west of the Cascade Mountains) at low to middle elevations, in damp, partly sunny to mostly shady places near forest edges, often in riparian areas. Its natural range is somewhat scattered and includes the western Columbia Gorge and parts of the Willamette Valley, as well as northern areas of the Olympic peninsula and southern British Columbia. 

Wildlife value
Penstemons, in general, are fantastic pollinator plants that are irresistible to hummingbirds, native bees, syrphid flies, beetles, ants, moths, and others, depending on the species. In my yard I’ve seen P. ovatus attracting syrphid flies, P. ovatus + tiny native beeants, bumble bees, and impossibly small native sweat bees (pictured, right), many of which nest in the ground (so please take care when applying mulch or digging in soil to avoid harming them!). In addition, small songbirds may eat the seeds that mature in summer, and foliage creates cover for tiny soil-dwelling creatures.

Try it at home
Broad-leaved penstemon likes rich soil, regular (but not excessive) watering, and virtually any light situation except very deep shade or full sun, although more sun tends to make the plants flower more. Since it is a fairly robust and versatile plant, placement shouldn’t be too difficult: In my Portland yard I find it does best in some morning sun, a couple of feet in from pathways due to its spread while in bloom. Placing multiple plants in groups or swaths, with each plant 12 to 24 inches apart, will make it easy for pollinators to find them and minimize the amount of bare soil that sprouts weedy plants.P.ovatus

As mentioned earlier, unless your soil is already high in organic matter and drains well, add some low-nitrogen compost before planting (well-decomposed leaf compost is good). I like to get plants in the ground in mid to late fall when forthcoming winter rains will help get their roots established before the demands of spring; if you plant in springtime be sure to keep them adequately hydrated, especially during that first summer. After plants are established (usually a couple of years), they should do fine with just occasional—but deep—watering. If you happen to plant them close to other plants that like frequent irrigation they will likely do fine, but don’t keep them consistently wet. Siting them at the edges of rain gardens should work, but not in the low, saturated parts. They will definitely self sow, but aren’t very assertive (volunteers are easy to pull, if necessary).

Another Northwest penstemon for moist conditions and sun to part shade is the beautiful Cascade penstemon (Penstemon serrulatus), which is found on both sides of the Cascades.

Grab a partner
If possible, grow broad-leaved penstemon with associated species that also naturally occurred in your area, to help provide an eco-functional space for wildlife. Since it naturally occurs within several native plants communities, shrubs and perennials in those communities are far too numerous to list here. For starters, in sunny sites consider serviceberry (Amelanchier alnifolia), red-twig dogwood (Cornus sericea), blue elderberry (Sambucus nigra ssp. caerulea), large leaf lupine (Lupinus polyphyllus), Douglas aster (Symphyotrichum subspicatum), Oregon iris (Iris tenax), camas (Camassia spp.), and blue-eyed grass (Sisyrinchium spp.). In shadier places try Cascade Oregon grape (Mahonia nervosa), western sword fern (Polystichum munitum), goatsbeard (Aruncus dioicus), fairy bells or fairy lanterns (Prosartes spp.), false solomon’s seal (Maianthemum racemosa), Oregon oxalis (Oxalis oregana), wild ginger (Asarum caudatum). As always, choose plants that are native to your area by buying plants that come from locally sourced material at reputable nurseries.

 

 


© 2017 Eileen M. Stark

To leave a comment, click on post’s title

 

Pacific Northwest Native Plant Profile: Western bleeding heart (Dicentra formosa)

D. formosa
We love Western bleeding heart
 (aka Pacific bleeding heart) because it’s so beautiful and delicate, especially in springtime when its leaves are fresh and flowers are bountiful. Whoever named it felt the same way, because botanically speaking it’s known as Dicentra formosa; the genus name Dicentra refers to the two nectar-bearing spurs characteristic of the flowers of the genus, and the epithet formosa derives from the Latin formosus, which means “beautiful”.

How it grows
With deciduous, finely divided, bluish-green leaves and enchanting, puffy pink flowers, it blooms from early spring into summer. In warm areas with no summer irrigation it tends to disappear after its leaves die back, but fleshy roots keep the plant alive until the following spring. Should moisture reach it during the summer or fall months, it could very well forget about dormancy and even produce more flowers in the fall. It prefers cool weather to hot, and can withstand cold winters.

Western bleeding heart naturally occurs from low to middle elevations in British Columbia and southward into Washington and Oregon (west of Cascades) and northern and central California. It thrives in part to full shade in damp forests and woodlands, in ravines, and near streams.

D. formosa + Bombus vosnesenkii

Western bumble bee feeding on western bleeding heart.

Yellow warbler + Dicentra formosa

Bleeding heart may provide food (aphids or nectar) for birds.

Wildlife value
Wildlife seems to adore this plant as much as we do, due to a variety of attractants. The nectar-rich flowers attract hummingbirds, bumble bees, and syrphid flies, while the foliage may be consumed by the larvae of clodius parnassian butterflies in parts of its range. Aphids like it too, but don’t worry—the birds who like to eat them should keep them in check (especially if you have other natives to attract them): In late April, a small flock of Orange-crowned warblers—fresh from their migration from southern California or Mexico—paused in my yard to feed quite voraciously on them for nearly a week (as well as the flowers, which they pierce to obtain the nectar); a couple of the warblers have stayed around and may be nesting nearby. In addition to birds, unnoticeable predators such as the developing larvae of some species of syrphid flies can eat as many as 500 aphids (each!) before they become adults. In landscapes where predators and prey are allowed to exist, a naturalistic balance soon results. 

Western bleeding heart mainly spreads by underground rhizomes, but it’s also figured out a way to get more mileage. The little black seeds of this plant evolved an oil-rich appendage (called an elaiosome) which ants may feed to their young. When the ants toss the unused part of the seed that’s still viable, they assist in dispersal.

The plant’s leafiness provides cover for small creatures like amphibians and various arthropods, and protects the soil as well. Reportedly, deer are not attracted to it, mostly likely because it contains an alkaloid — isoquinoline — which is toxic in large amounts.

Try it at home
This plant looks wonderful in woodland gardens growing beneath native conifers or other trees, in the company of ferns like deer fern (Blechnum spicant) or western sword fern (Polystichum munitum). It does best with light, moist soil that’s rich in organic matter. Adding a top layer of leaf compost or other organic matter (but not wood chips or bark mulch) and allowing fallen leaves to remain on soil will help maintain moisture around its roots, improve soil structure, and add some nutrients to the soil.

Keep in mind, though, that this is not a shy plant! It likes to prance around the yard so is not best for very small sites, especially if there are delicate perennials that awaken late and could be shaded out by the early arriving bleeding heart. That said, it’s not terribly difficult to remove should you decide you’ve lost affection for it later on (but don’t put its rhizomes in your home compost bins or it might spread everywhere).

Like red-flowering currant, western bleeding heart had to receive a transatlantic ticket to Europe before becoming popular in gardens here: Reportedly, when the Scottish naturalist and surgeon Archibald Menzies found it in Nootka Sound on the Vancouver Expedition in 1792, he gave it to the Royal Botanic Gardens at Kew a few years later. The plant’s seed was then cultivated in Europe, but was not known to be cultivated in the US until 1835.

Grab a partner
Western bleeding heart thrives with native conifers, and in the Pacific Northwest they might be western red cedar (Thuja plicata), western hemlock (Tsuga heterophylla), Douglas-fir (Pseudotsuga menziesii), grand fir (Abies grandis), noble fir (Abies procera), Sitka spruce (Picea sitchensis), and coastal redwood (Sequoia sempervirens), depending on the location. Deciduous trees like red alder (Alnus rubra) and vine maple (Acer circinatum) also like its companionship. Understory species often found growing with it include red huckleberry (Vaccinum parviflorum), evergreen huckleberry (V. ovatum), red twig dogwood (Cornus sericea), salal (Gaultheria shallon), osoberry (Oemleria cerasiformis), false Solomon’s seal (Smilacina racemosa), Hooker’s fairy bells (Disporum hookeri), western meadow rue (Thalictrum occidentale), Scouler’s corydalis (Corydalis scouleri), stream violet (Viola glabella), ferns—such as western sword fern (Polystichum munitum) and lady fern (Athyrium filix-femina)—and mosses.

Other Dicentra species in the Northwest
The uncommon Dicentra cucullaria (Dutchman’s breeches) has white to pale pink flowers with yellow tips and occurs in parts of northern Oregon and southern Washington, mainly near the Columbia River. D. pauciflora, (shorthorn steer’s head or few-flowered bleeding heart), is native to Josephine County, Oregon and small parts of California, only at high elevations in gravelly soils. D. uniflora (steer’s head), is a rare relation that also grows in gravelly (sometimes serpentine) soils at low to high elevations in parts of the Northwest.

 

© 2017 Eileen M. Stark

To leave a comment, click on post’s title

Pacific Northwest Native Plant Profile: Western trillium (Trillium ovatum)

Trillium ovatum

Although introductions are probably not necessary, this is Trillium ovatum, an unmistakable and endearing plant that softly lights up the vernal understory of moist coniferous and mixed forests from southern British Columbia, south to California, east to Idaho, Montana and small parts of Wyoming and Colorado, and north to southwestern Alberta. It’s part of a large genus, with about 50 other members that are native to temperate areas of North America and Asia.

Trillium ovatum’s common names are “western trillium” and “wake robin,” the latter due to its unofficial designation as harbinger of spring. Trillium comes from modern Latin, reportedly an alteration of the Swedish trilling, meaning “triplet,” which refers to its three leaves and three petals. Ovatum is derived from the Latin ovum meaning “egg-shaped,” which describes the leaf outline.

How it grows
A perennial that grows from rhizomes, it technically produces no true leaves or stems above ground; the stems are considered an extension of the horizontal rhizome. The part of the plant that we notice most is an upright flowering scape (stalk), and the leaf-like structures are bracts, but most people call them leaves because they photosynthesize. The smaller leaf-like structures just under the flower are sepals.Trillium ovatum

Trillium species are divided into two types: Pedicellate (those with flowers that have a short stalk called a peduncle) and sessile (those with flowers attached directly to the bracts). The flowers have six stamens and three stigmas. Trillium plants are very long lived and can take as long as 10 years to flower from seed. As the flowers age and following pollination, the white flowers change to pink or even burgundy. Trillium are known as spring ephemerals; as summer proceeds, they go into dormancy and mostly disappear from our view (although those that are well established or receive adequate summer water usually maintain their greenery above ground following the flowering period).

Wildlife value
Pollination happens thanks to native bumble bees, moths, and beetles. The resulting fruit is fleshy and berrylike; the seeds evolved to have fleshy elaiosomes whose nutritious proteins and fats attract muscular ants who carry the seeds back home to feed their young. After the food is consumed, they toss the still viable seed and, voila! Seed dispersal accomplished.

Try it at home
Although trillium plants are quintessential forest denizens, they usually do well in shaded to partly shaded, moist woodland gardens, or even just moist (but well drained) areas on the north or east side of houses, provided that the soil is rich in organic matter and slightly acidic (pH 5.0 to 6.5). Leafy and woody debris is very important in the forest, and should be allowed to accumulate and decompose on the soil at home as well, since fallen leaves, bark, twigs, cones, and branches slow moisture loss and provide habitat as well as nutrients. If your soil is poor and lacking in organic matter, or if the top soil is shallow, add some compost as mulch (leaf compost is good) right after planting and allow whole leaves to continually accumulate on top to eventually create more humus.

Trillium can withstand minor droughts, but occasional summer water will help keep them going until winter rains begin. Recent transplants should definitely be kept slightly moist during the first couple of summers. 

The plants you buy will likely be small, but in the right conditions and over many years they will slowly spread from rhizomes to a clump as wide as two feet. Grow them as nature would: In drifts with individual plants roughly several feet apart. Although I haven’t quite gotten around to growing them from seed, sources say that seed should be collected when capsules begin to open in midsummer. Sow them twice as deep as the seed’s diameter (or slightly deeper) in deep containers with coarse growing medium. Leave them outdoors in a shaded spot to mimic natural conditions. More detailed info on propagation here.

Some PNW associates to grow them with include Douglas-fir, western redcedar, western hemlock, Pacific rhododendron, vine maple, salal, sword fern, maidenhair fern, deer fern, vanilla leaf, oxalis, western wild ginger, and stream violet.

Other Pacific Northwest trillium
Trillium albidum occurs in most parts of western Oregon, as well as Thurston, Pierce and Lewis counties in Washington, and much of northern California. Trillium parviflorum grows naturally in southwestern Washington and northwestern T. kurabyashiiOregon. Trillium rivale occurs only in southwestern Oregon and the northernmost counties of California. Trillium kurabayashii (pictured, right) is naturally found only in Oregon’s Curry County, as well as Del Norte and Humboldt counties of California.

Only buy natives from reputable nurseries and never dig plants from the wild. And it’s true what they say about never picking the flowers—doing so may eliminate the only chance the leaf-like bracts have for photosynthesis, and cause the plant to weaken or possibly even die.

 

© 2017 Eileen M. Stark

To leave a comment, click on post’s title

Pacific Northwest Native Plant Profile: Red-twig Dogwood (Cornus sericea)

Cornus sericea ssp. occidentalis

Red-twig dogwood is one of those multitalented shrubs that grows in a variety of moist habitats, provides significant wildlife habitat, and keeps us enthralled year round. Also known as red osier dogwood and creek dogwood (among other common names), it is a multi-stemmed, deciduous, long-lived and fairly fast-growing shrub that develops into an open, somewhat rounded thicket. Its common name comes from signature reddish stems which become brightest in winter. Botanically speaking, it’s known as Cornus sericea (syn. Cornus stolonifera). Sericea comes from the Latin “sericatus,” which means “silky” and describes the soft texture of the leaves and young twigs. Stolonifera refers to its lower stems or branches that tend to tiptoe horizontally and grow roots when they touch the soil.

Besides its vibrant red stems, this plant has oppositely-arranged, deep green leaves that turn an array of colors as the days shorten in autumn. On this sunless late November day in my back yard, the leaves range from a soft gold and pale orange to deep red, and they’re becoming more purplish-red each day. Come spring, four-petaled creamy white flowers will appear in clusters in May to July and will be tailed several months later by soft white to pale blue fruit (shown above) that may persist into winter if the birds don’t devour them.
Cornus sericea

How it grows
Red-twig dogwood has a large range—from Alaska and northern Canada from coast to coast, and as far south as Virginia in the east and Chihuahua, Mexico in the west, at low to middle elevations. There are two subspecies: C. sericea ssp. occidentalis, which occurs in the Pacific Northwest, Alaska, California and British Columbia, and C. sericea ssp. sericea, which is found much more widely. Differences are miminal, with the latter having slightly larger flower petals and fuzzier leaves and shoots. Both typically occur in moist, open sites such as meadows, bogs, floodplains, and near shorelines, but they also can be found under forest canopy as well as within more open woodlands in or near riparian areas.

Wildlife value
Red-twig dogwood is important for providing diverse structure, cover, nesting habitat, and a variety of edibles for insects, mammals, amphibians, and a large number of bird species. Bees and other pollinators, such as butterflies, use the flowers for nectar and/or pollen. Birds (including waxwings, thrushes, band-tailed pigeons, northern flickers, and grosbeaks), small mammals, and bears dine on its fruits—one or two-seeded drupes which are reportedly very high in fat—in summer and fall. According to the US Forest Service, “moose, elk, deer, bighorn sheep, mountain goats, beavers, and rabbits” commonly browse the stems; twigs and new shoots provide especially delectable and nutritious winter browse. Last, but not least, this shrub provides cover and important nesting habitat for songbirds, small mammals and amphibians, as well as host plants for the larvae of butterflies like the echo blue butterfly.

Cornus sericeaTry it at home
Although fairly shade tolerant, plants growing in full sun typically grow much more compactly than those in shade, usually bloom more profusely, and exhibit more stem color. Depending on the amount of sun it receives, red-twig dogwood can grow from about 6 to 16 feet tall, and nearly as wide, so it may be best to leave it out of very small gardens. If you have the space, use it in any moist area where you’d like spectacular aesthetic appeal as well as valuable wildlife habitat: At the back of a border, next to a rain garden, as a somewhat open screen, as part of a large hedgerow, or to stabilize eroding soil on slopes. Plant it in the fall to give it an easy start in life, adding some leaf compost if your soil is in poor shape. Allow future leaves to stay where they fall.

Damp soil is important, and slow-draining soil is not a problem (although this plant shouldn’t have its feet immersed in water for prolonged periods). Though its tolerance for drought isn’t terribly high, with a little shade and soil that’s rich in organic matter, infrequent summer watering during excessively hot periods should be all that is needed once it’s established (typically just a couple of years). And, allowing for a dry period at the end of summer is actually a good and natural thing (as long as the plant looks healthy), since a bit of drought prepares the plant for winter. Red-twig dogwood is often planted at restoration sites, which are rarely watered afterwards, and most usually do fine.

Grab a partner
Since red-twig dogwood grows in such a wide range of habitats, there are a number of plant friends with which it would like to live. For best ecological and gardening results, choose associated native plants that live in communities that currently grow or likely would have grown in your immediate area. In the Pacific Northwest, some of the plants that closely associate with red-twig dogwood include western redcedar (Thuja plicata), Douglas-fir (Pseudotsuga menziesii), vine maple (Acer circinatum), alder (Alnus spp.), willow (Salix spp.), aspen (Populus tremuloides), paper birch (Betula papyrifera), gooseberries (Ribes spp.), black hawthorn (Crataegus douglasii), lupine (Lupinus spp.), aster (Symphyotrichum spp.), and many others.


© 2016 Eileen M. Stark

To leave a comment, click on post’s title

 

Reimagining the Ecological Value of Cities for Dwindling Pollinators

Bombus vosnesenskii

A recent literature review on the ecology of urban areas published in Conservation Biology offers irrefutable evidence that cities can and ought to be havens for wildlife, specifically pollinators. In “The City as a Refuge for Insect Pollinators,” the authors, a group of multidisciplinary scientists from around the world, recommend that urban areas—particularly fast growing ones—be managed to support biodiversity.

Habitat loss, degradation and fragmentation, industrial farming, wildlife diseases, and widespread use of toxic pesticides have wiped out and continue to wipe out many insect pollinator species. Along with other invertebrates, we really don’t know how many are disappearing from the earth forever, although new studies show horrifying losses. Since urban sprawl is a major reason for the shocking loss of biodiversity, it’s surprising that historically, the consensus—even among conservationists—has been that cities can’t or don’t need to support wildlife. But many years of research on wild bees in urban areas proves that cities can or still do supply habitat for both pollinator abundance and diversity, and “in several cases, more diverse and abundant populations of native bees live in cities than in nearby rural landscapes.”

While we certainly need to also restore and protect rural and suburban lands, there’s a growing realization that “pollinators put high-priority and high-impact urban conservation within reach,” writes the team. “The relatively small spatial and temporal scales of insect pollinators in terms of functional ecology (habitat range, lifecycle, nesting behavior compared with larger mammals for example) offer opportunities for small actions to yield large benefits for pollinator health.” Small actions: they’re talking about you and me, as well as city planners. As the authors note, many residents understand the urgency and necessity, and are willing to help. Turning our yards into “real” Cedar waxwing in red-flowering currantgardens, complete with native plantings and other elements that support entire life cycles of local biodiversity, ought to be paramount. Priceless benefits to us (crop pollination and a chance to admire nature’s beauty), to countless other species that rely on plants or insects for food, and to plants (pollination), come with the package.

Urban conservation often aims to connect people to nature. This is, of course, a good thing, since nature education is extremely important—it’s been said many times that the more we learn about wildlife and natural processes, the more we will want to protect it. But if more effort was spent on wildlife itself and providing what it needs (large, undisturbed, interconnected areas of native flora), no doubt many species would be much better off. I always feel a need to apologize to startled birds and little mammals I encounter on walks in natural areas around the city. There’s a reason wildlife refuges often close off sections to pedestrians: many species are hypersensitive to human presence; they see us as predators and the stress harms them. It would be immensely beneficial if parts of urban areas were also simply left to the wild ones.

I can’t agree more with the authors. If we want to recover and protect pollinators and other wildlife globally, we need to tend to their needs locally. It will take policy makers, planners, and environmental managers, but also each of us, whether we work individually or engage with community organizers.

 

© 2016 Eileen M. Stark

To leave a comment, click on post’s title

Pacific Northwest Native Plant Profile: White spiraea (Spiraea betulifolia var. lucida)

 

 

Even though it’s growing and thriving in my front yard, it took an October trip to northeast Oregon’s Wallowa Mountains to remind me why I love white spiraea (aka shiny-leaf spiraea or birch-leaf spiraea), or botanically speaking, Spiraea betulifolia var. lucida. In Latin, lucida means “bright,” or “to shine,” and shine it does.

Uncommon, small (as shrubs go, typically about 3 feet tall), erect (usually) and deciduous, it’s a very attractive native plant that spreads slowly by rhizomes. Though its seeds are also perfectly capable of repopulating and may be distributed by birds, rodents, or wind, I find it’s not a strong self-sower. The U.S. Forest Service affirms that “overall seed production and dispersal is low” and “seedlings of white spiraea are rarely found.”

Besides its small stature that allows it to fit into fairly tight spots, it has many other attributes and I can’t imagine why it’s not planted more often in yards and gardens in the Northwest. It’s barely mentioned in my book, so here I give it its due.

In late spring to early summer, creamy white flowers — sometimes with a pale pink blush — show up in flat-topped clusters that are 2 to 5 inches wide. With occasional deep summer watering, it will sometimes bloom during late summer and even autumn as well. As the flowers mature they offer lovely, although fairly inconspicuous, golden brown seed heads that continue to delight.

Spiraea betulifolia var. lucidaBut the best is yet to come: Fall may be its prime season when oval to oblong toothed leaves turn lovely shades of gold, orange, red, and burgundy. The entire little shrub lights up like a flame above the dark, moist soil and fallen leaves beneath it.

 

 

How it grows
White spiraea naturally occurs in parts of western Canada, Washington and Oregon, and as far east as Montana. It grows along streams and lakes, in mountain grasslands and on the slopes of forests (especially rocky ones) both east and west of the Cascades, from sea level up to about 4,000 feet, although it can be found at higher elevations in moist forests. Since it’s best to grow native plants that are indigenous to your area, find out whether it occurs naturally in your county with this USDA map.

Last week I was pleasantly surprised to find it in the Wallowa-Whitman National Forest along the Wallowa Lake Trail and the Hurricane Creek Trail near Joseph, Oregon. Since these areas can get quite dry in summer, the plant’s drought tolerance is likely due to its rhizomatous ways. Often surviving in burned areas, fire kills the aboveground part of the plant, but it resprouts from “surviving root crowns, and from rhizomes positioned 2 to 5 inches (5-13 cm) below the soil surface,” according to the US Forest Service. Along the Hurricane Creek Trail, which meanders through a burned area, white spiraea was joined by “pioneer” species like western yarrow (Achillea millefolium var. occidentalis), and western pearly everlasting (Anaphalis margaritacea).

Wildlife value
The flowers—often with an extended bloom time—offer pollen and/or nectar for pollinators such as native bees, syrphid flies, butterflies, moths, wasps, and ants. Leaves and branches offer a bit of cover for small creatures, and fallen leaves protect the soil and overwintering invertebrates, which provide food for myriad other species. It’s reportedly rather unpalatable to mule deer and elk, for those of you wanting native plants that won’t get munched on overnight.This image has an empty alt attribute; its file name is S.-lucida-w-bumblebee-1.jpg

Try it at home
White spiraea is a fantastic little shrub that can be used in the places that a large shrub would outgrow in a few years. It’s also quite versatile when it comes to both light and moisture conditions. Since it’s an understory plant, it can handle quite a bit of shade to a fair amount of sun, but seems to do best in a mix of both. A restoration project in Montana found that the plants did much better on east or south-facing slopes, rather than west-facing slopes that get scorchingly hot afternoon sun. At the Portland community garden where I rent a plot for growing veggies, white spiraea was planted (before I acquired my plot) in native beds that border the garden. The beds provide a little test because the sunlight that reaches them varies from just a few morning rays to about a half day of sun to nearly all-day sun. Echoing the Montana study, the spiraeas that do best are in a partly shaded area; many of the ones planted in a narrow sunny strip along a hot concrete walkway died, while those in full shade survive, but don’t look their best or flower much.

Spiraea betulifolia var. lucida

Place them about 3 or 4 feet apart and at least 2 feet from walkways, since they will eventually spread (slowly) and you don’t want to be constantly pruning them back. Amending soil with some organic matter (like compost) will help them get established, although they are quite tolerant of clay soil, as well as rocky soil. Mulch them with a natural mulch (like leaves) and keep them well watered the first 2 to 3 years, after which they should be quite drought tolerant (unless you plant them in all-day sun, which I don’t advise).

Grab a partner
Grow white spiraea with associated species that naturally occur in your area to help provide an eco-functional space for wildlife. It naturally occurs within Douglas-fir, grand fir, ponderosa pine, and lodgepole pine communities. Though shrubs and perennials in those communities are far too numerous to list here, consider serviceberry (Amelanchier alnifolia), red-twig dogwood (Cornus sericea), blue elderberry (Sambucus nigra ssp. caerulea), and Cascade Oregon grape (Mahonia nervosa). As always, buy plants that come from locally-sourced material at reputable nurseries.

 

© 2016 Eileen M. Stark

To leave a comment, click on post’s title

 

Pacific Northwest Native Plant Profile: Graceful cinquefoil (Potentilla gracilis)

Potentilla gracilis with sweat-bees
Nicknamed slender cinquefoil or western cinquefoil, Potentilla gracilis is a perennial herbaceous plant. It naturally occurs over much of western and northern North America at low to high elevations, mostly in moist to dry prairie and savanna ecosystems, but also in open forests, on rocky slopes and subalpine meadows. Growing from a woody crown, it has sharply divided, oval, deep green leaves with hairy, silver undersides and somewhat erect inflorescences with bright to pale yellow five-petaled flowers that bloom from early to late summer. In the Pacific Northwest, it naturally occurs in nearly every county in Oregon and Washington, as well as parts of southern British Columbia.

Closely related species include Potentilla glandulosa (sticky cinquefoil), with cream to pale yellow flowers, and Potentilla pulcherrima, the latter of which grows in montane regions. P. pulcherrima (common name: beautiful cinquefoil) comes from the Latin pulcherrima, which means “very beautiful” (aren’t they all?). Both occur mainly in the western U.S. and Canada. There are many other species of Potentilla, but P. gracilis and P. glandulosa are the most common west of the Cascades and are the most likely to be found for sale at nurseries.

Wildlife value
Native bees, butterflies, syrphid flies, and other beneficial insects are attracted to the flowers. Graceful cinquefoil is also a host plant for the caterpillars of butterflies such as the two-banded checkered skipper. It is not attractive to deer.

Try it at home
Graceful cinquefoil does best in moist, well-drained soil that’s rich in organic matter, in full to part sun. Since it’s not a tall plant (usually no more than about two feet tall) and only grows to about two feet wide, site it where it won’t be heavily shaded by other plants. You can also grow native cinquefoil in a container, but be sure it gets enough moisture. Associated species include Cascara and Oregon ash trees, and perennials such as checker mallow, Oregon iris, native lupines, and other moisture loving plants. Summer water is essential until it’s established, but even afterwards it will do best with supplemental water during the hot, dry part of summer.

© 2016 Eileen M. Stark

To leave a comment, click on post’s title

An Underappreciated Insect: The Syrphid Fly

Toxomerus occidentalis, female slurping nectar on Erigeron specious (showy fleabane)

Toxomerus occidentals (female), soaking up nectar on showy fleabane (Erigeron specious)


Beneficial in many ways, syrphid flies — also called flower flies — 
are true flies in the order Diptera, family Syrphidae. Some can be recognized by their ability to dart around as well as hover in the air in one place, wings nearly invisible, as they search for flowers on which to feed—somewhat like a tiny helicopter, but with much more grace (this flair led to their other common name, hover fly). They come in various shapes and sizes (typically 1/4 to 3/4 inch in length); the tiny ones require a hand lens or macro lens to get a good look. And when you do, you’ll be amazed at the beautiful patterns and bright colors that often serve to mimic dangerous looking bees or wasps and fool predators like birds into leaving them alone (but don’t worry, they couldn’t sting you if they wanted to!).

Syrphids in the genus Spilomyia often mimic wasps, with vivid yellow and black patterns and modified antennae.

Syrphids in the genus Spilomyia often mimic wasps, with vivid yellow and black patterns and modified antennae.


Multi-functional

Not needing to carry and store pollen for their young (like most bees do) doesn’t prevent them from being extremely important pollinators. Researchers have found that although syrphid flies pollinate less effectively per flower visit, they visit flowers more often, resulting in essentially the same pollination services as bees. And, it’s thought that they may be more tolerant of the landscape changes that we humans insist on, than bees are.

But syrphid flies are not only important as pollinators in gardens, organic farms, and wild areas. During their immature stage, most species that are found in gardens and nearly half of the 6,000 syrphid fly species worldwide are voracious consumers of aphids, scale insects, and other soft-bodied pests. In coastal Central California, researchers compared romaine lettuce sprayed with an insecticide and lettuce without insecticide. They found that syrphid larvae were primarily responsible for suppressing aphids in organic romaine lettuce, and called the sprayed lettuce “unmarketable.” Other types of syrphid fly larvae are either (1) scavengers that tidy up ant, bee, and wasp nests, (2) feeders of plant material, tree sap, and fungi, or (3) decomposers that feed on decaying organic matter. To add to their achievements, larvae are reportedly more effective in cool weather (as in early spring) than most other such predators.

Myathropa florea, male. Larvae feed on bacteria at the base of trees or in decaying leaves.

Myathropa florea, male. Larvae of this species feed on bacteria at the base of trees or in decaying leaves.


Life Cycle

Females lay their tiny, elongated eggs singly on leaves—typically near aphid colonies, so food is within reach—and they hatch in a few days. The tapered, grub-like larvae are blind and legless, but the mouths of these aphid-eaters are equipped with triple-pointed darts that enable them to pierce and suck their prey dry. At maturation, the larvae are promoted to the soil to become pupa and, eventually, adult flies. Their life cycle takes several weeks; reportedly three generations per year are typical in the Northwest. Most syrphid flies overwinter as larvae in leaf litter—yet another reason to not remove fallen leaves from soil!

Close encounters
The best way to spot these helpful, colorful little insects in your garden is to move slowly and quietly, and observe carefully. Sometimes all I have to do is pause next to a group of flat-topped flowers (white or yellow ones seem to be their favorites), and within a few minutes one or two will show up to eat (and to dazzle me—in morning sunlight these exceptional little pollinators shimmer!). I’ve photographed nine different species in my small yard, and I’ve just started. Hopefully I’ll encounter many more of these fascinating little flyers in the years to come.

To avoid confusion with bees and wasps, just remember that syrphid flies have huge compound eyes (which help to determine their gender—female eyes are spaced slightly apart while males’ come together at the top of their head); their bodies are sometimes flatter than bees and wasps; their antennae are usually very short; they don’t carry pollen around like most bees do; they have one pair of wings (unlike bees and wasps that have two pairs). The second pair of wings of flies has been reduced to two little knobs called halteres, which can be seen in the photo below. Halteres function like tiny gyroscopes that allow them to stay balanced by detecting and correcting changes in rotation while flying, and enable their zippy acrobatic flights.

Although the mouth parts of syrphids vary between species, allowing different species to access nectar in differently shaped flowers, their typical mouth is basically a retractable extension with a spongelike tip that can soak up either nectar or pollen. The species that have this can only feed on open flowers that have easily accessible nectar. Some species have a modified mouth that allows them to feed at elongated, tubular flowers.

The halteres can be seen at the base of the wings.

The halteres can be seen at the base of the wings.

 

Conservation
Syrphid flies have been studied very little in the U.S., but European research has shown that species diversity has fallen in areas of intensive human activity. According to the Xerces Society, in Britain, seven of the 22 flies for which Biodiversity Action Plans have been prepared are syrphid flies. Given the substantial loss of pollinators induced by habitat loss, pesticides, nonnative species and climate chaos, and the profusion of others in danger of extinction, there is a definite need to conserve all types of wild pollinator communities.

Providing for these flies is similar to most other pollinators: A variety of flowers from spring till fall for adults, and appropriate habitat for egg laying, larval development, and overwintering. Attract and nurture syrphid flies with a diversity of native plants that provide a lot of nectar and pollen (females need pollen to produce eggs). In the Pacific Northwest, try yarrow (Achillea millefolium var. occidentalis), stonecrop (Sedum spp.), goldenrod (Solidago canadensis), blue-eyed grass (Sisyrinchium spp.), fleabane (Erigeron spp.), white spiraea (Spiraea betulifolia var. lucida), mock orange (Philadelphus lewisii), and aster (Symphiotrichum spp.). The flowers of chamomile, dill, parsley, and other garden herbs with flat-topped flowers are also very attractive to them, as is the pollen of grasses and sedges that’s often available early in the season. Be sure to allow leaf litter and downed wood to remain on soil to help them get through the winter and to provide food for the decomposer types.

Aphid remedy
If you have an aphid problem on some plants, remember that predatory insects that keep pests at acceptable levels need prey like aphids. Always inspect aphid colonies for syrphid fly larvae before even thinking about control, even “organic” remedies. Use only plain water to spray off aphids (that can’t climb back on), but only if necessary. Never, ever use insecticides, to which syrphid flies and other creatures are very sensitive. Usually, just turning your back is the best thing: One summer a large patch of native bleeding heart (Dicentra formosa) in my backyard was absolutely infested with aphids. I decided to let nature take her course—cheering on the ladybird beetles and birds who flourished with the situation. As the leaves died back (as they do naturally when the heat of summer arrives) I forgot about the aphids. The following year there were scarcely any on the bleeding heart, but I found another species of aphid on nodding onion (Allium cernuum); again I did nothing and nature took care of it. The following year the wild onion and bleeding heart were fine, but the aspen trees were stricken. Yet again, ladybugs, lacewings, and several species of songbirds took advantage of the generous buffet. The following year there were no outbreaks in my yard, at least none that I noticed.

 

Syrphus opinator (female) on Spiraea betulifolia var. lucida

Syrphus opinator (female) on white spiraea (Spiraea betulifolia var. lucida)

 

Eristatis male on yarrow (Achillea millefolium var. occidentalis

Eristalis sp. on yarrow (Achillea millefolium var. occidentalis)

 

© Eileen M. Stark 2016

To leave a comment, click on post’s title

 

Beyond Bees: The Underappreciated Pollinators

Common ringlet (Coenonympha tulle)
The majority of flowering plants evolved to take advantage of insects, and depend on them (and less commonly, other animals or wind) to fertilize their flowers, facilitate gene flow, and prevent inbreeding. Bees might be the most obvious pollinators, and on a warm summer day it seems flowers and bees were made for each other. Native bees, including the 90% of species native to the U.S. that are solitary rather than social — that is, females create nests and raise their young without the help of any other bees — are considered to be the most important pollinators (move over, European honeybees!) and are invaluable members of natural systems. But other capable pollinators—like butterflies and moths, hummingbirds, wasps, ants, herbivorous fruit bats, and even rodents—share the pollen distribution workload, and offer ecological benefits as well. Less well known are the thrips, beetles, mosquitoes (yes, you read that right), and flies that are actually quite accomplished pollinators. Distributing pollen may be a sideline for them, but they often excel because they don’t take pollen back to their nests, as most bees do.

Thrips go way back—to the Permian period, over 250 million years ago—but get a bad rap because of a few species that threaten crops. Studies show that they are strong pollinators of some plants, particularly early in the season when most other pollinators aren’t around.

The adult ornate checkered beetle (Trichodes ornatus) feeds on flowers such as wild buckwheat (Eriogonum spp.), transferring pollen from anther to stigma.

The adult ornate checkered beetle (Trichomes oranatus) feeds on flowers such as wild buckwheat (Eriogonum sp.) and helps transfer pollen from anther to stigma.

Beetles are particularly important in semi-arid parts of the world and have a highly developed sense of smell. They are expert and essential pollinators, according to the Forest Service, and also were around millions of years before bees appeared. Like many species of birds, bees, and butterflies, beetles are in danger of extinction. The International Union for Conservation of Nature lists over 70 beetle species as endangered. The main threats include habitat destruction, chemical pollutants (e.g., pesticides), displacement by introduced species, and hybridization with other species due to human interference.

Although many flies (order Diptera) are recorded as flower visitors, relatively little is known about pollination by flies, compared to other more obvious pollinators. Many flies are strong pollinators, including syrphid flies (which deserve their very own special post) as well as some tachinid flies, which are the most diverse family of the order Diptera (true flies). As adults, they are flower visitors, feeding on nectar and/or pollen; in their larval stages many species help to control insects that we consider pests.

Suillia spp. attracted to bear grass (Xerophyllum tenax) receives a pollen reward.

Pollination by insects is usually mutually beneficial. Here, a fly (Suillia variegata) attracted to bear grass (Xerophyllum tenax) receives a pollen reward and the flower gets fertilized.

While I’m not advocating the nurture of mosquitoes in your garden (the females do suck blood and can carry disease, after all!), it’s noteworthy that mosquitoes, like all insects, do have a role in natural systems. Their primary source of food is flower nectar (with males eating nothing but nectar) and they buzzily and incidentally carry pollen from flower to flower. Plants like goldenrod (Solidago spp.) use mosquitoes as pollinators, as do orchids of northern latitudes, grasses, and many other types of plants. And they are a source of food for birds, fish, amphibians, spiders, bats, dragonfly larvae, and other animals.

How you can help a variety of pollinators

Within our increasingly fragmented landscapes, gardens that provide pollen and nectar-rich plants—as well as nesting and overwintering sites—can create critical habitat and connections for pollinators and other creatures. No space is too small, and when in close proximity to other larger gardens, natural areas, or greenways that sustain native plant populations appropriate to the region, their value deepens.

◊ Choose natives that occur naturally in your area, or at the very least heirloom ornamentals (rather than newer hybrids that may not provide sufficient or appropriate nutrients that native species do). Some garden herbs like cilantro, parsley, and dill attract some pollinators when allowed to flower.

◊ Avoid nonnative invasive species like “butterfly bush” (Buddleia davidii) that sound good, but aren’t.

◊ Provide structure and layering in the form of native trees and shrubs that provide food, cover and nesting sites for various pollinators.

Syrphid _ Eumerus sp.

Syrphid fly (Eumerus sp.) on Sedum spathulifolium, a west coast native.

◊ Plan for continuous flowering, spring through fall. Early spring nectar is particularly important for early-emerging queen bumble bees and other solitary bees, as well as flies and beetles.

◊ Choose a variety of plants that differ in the size, shape, and color of blossoms to attract a variety of pollinators. Arrange perennials in drifts or swaths of at least three of a kind, rather than singly here and there. And don’t forget that trees and shrubs produce flowers!

◊ Stay away from pesticides and other chemicals. Insecticides, herbicides, fungicides, and synthetic fertilizers are particularly harmful to sensitive pollinators. Don’t purchase plants pre-treated with neonicotinoids; if you’re unsure, ask.

◊ Don’t be too neat. Leaf litter, dead wood (tree snags or piles of branches), and other natural detritus provide essential habitat, nesting materials, and overwintering sites for adult pollinators or their eggs, larvae, or pupae. And allow some bare soil for pollinators that nest in the ground.

◊ Grow lepidoptera (butterfly and moth) host plants that provide food and habitat for their young. Find out which species frequent your area and grow the native plants that they need to breed.

◊ Provide shallow water and some moist soil. A shallow pie plate or flowerpot saucer, filled with clean gravel or small rocks allow insects to drink without drowning. Also, butterflies and moths need muddy or sandy puddles to obtain water and nutrients. Add a dash of salt to be sure male Lepidoptera get enough sodium prior to mating.

Please see this post for more detailed info on supporting pollinators in all their life stages.

© Eileen M. Stark 2016

To leave a comment, click on post’s title

Fragrance in a Northwest Garden: Western mock orange (Philadelphus lewisii)

Philadelphus lewisii

Had Carl Sandburg penned a poem about the way a captivating scent wafts through the air — prior to his famous “Fog” — he might have written that it approaches us “on little cat feet.” Like fog, scent is silent and invisible and adds a fresh, sensual dimension to a garden (or a walk in the woods for that matter). One of the most fragrant flowering shrubs is mock orange, and the Pacific Northwest’s native offering, Philadelphus lewisii (Western mock orange or Lewis’ mock orange), doesn’t disappoint. Plan ahead and place this medium-sized deciduous shrub where its fragrance can be noticed.

Philadelphus lewisii is named after scientist and explorer Meriwether Lewis, who collected it in 1806 during the Lewis and Clark expedition. Native Americans had numerous uses for it, including making tools, snowshoes, furniture, and even soap.

How it grows
Although there is quite a bit of individual variation within this species, the structure and growth pattern of this particular shrub goes something like this: Maturing at 5 to 10 feet tall and nearly as wide, this fairly fast grower may send out arching basal shoots as it ages, and eventually become a thicket. In late spring, flowering shoots appear, followed by vegetative growth. Rich green, egg-shaped leaves (roughly three inches long) grow in pairs along its stems. At the tips of branches, multiple clusters of white, four-petalled blossoms adorned with soft yellow stamens emerge in late spring or early summer and sparkle against a green, leafy backdrop. Flowers measure one to two inches in diameter, and offer a lovely, fruity fragrance.

Wildlife value
Mock orange’s fragrance doesn’t just appeal to us, though—it attracts nocturnal moths and butterflies like the western tiger swallowtail. As they feed on its nectar and incidentally brush against theSyrphid fly on Philadelphus lewisii flower’s anthers, thousands of male pollen particles are released, pollinating its flowers. Other pollinators attracted to scent include bees, but also syrphid flies (aka flower flies), which are particularly fond of white and yellow flowers. In late summer into winter, mock orange’s wildlife appeal continues as the plant’s tiny seeds are consumed by many species of birds, including goldfinches, as well as squirrels. It also provides twiggy cover year round.

Try it at home
Mock orange is easy to grow. It tolerates both drought (after it’s established, of course) and moisture, and will do well in full to part sun or in a fair amount of shade (but not deep, dark shade). It’s also a good shrub for stabilizing soil on slopes due to a fibrous root system. While it’s not fussy about soil, if your soil’s in bad shape consider incorporating and/or mulching with some decomposed organic matter (like compost) to get it off to a good start.

It’s best to let native plants attain their natural size and habit, but if yours was placed too close to a path or some such, pruning may be necessary. Mock orange should only be pruned soon after flowering since next year’s blossoms develop on the previous year’s growth.

Philadelphus lewisii

 

Grab a partner
Though not common, western mock orange is widespread. It occurs naturally from southern B.C. to northern California and the Sierras, and east to Alberta and western Montana, at low to mid-elevations. Growing along creeks and seeps and forest edges, on hillsides, and within chaparral and pine and fir communities, it associates with species such as Douglas-fir, oceanspray, ninebark, osoberry, baldhip rose, tall Oregon grape, and others. If space allows, try it as a member of a multi-species (unclipped) hedgerow (should pruning be necessary, do it soon after flowering, so that the following year’s blossoms aren’t affected). To stimulate flowering on older shrubs, cut back flowered growth to strong young shoots, cutting out up to 20 percent of aging stems near their base.

Other fragrant PNW plants include wallflower (Erysimum capitatum), Nootka rose (Rosa nutkana), clustered rose (Rosa pisocarpa), bald hip rose (Rosa gymnocarpa), Oregon grape (Mahonia spp.), fringecup (Tellima grandiflora), serviceberry (Amelanchier alnifolia), checker mallow (Sidalcea spp.), oceanspray (Holodiscus discolor), some ceanothus (Ceanothus spp.), bear grass (Xerophyllum tenax), milkweed (Asclepias spp.), madrone (Arbutus menziesii), and black hawthorn (Crataegus douglasii). Enjoy!

 

© 2016 Eileen M. Stark

To leave a comment, click on post’s title

Best Early Spring-Flowering Shrubs for Pacific Northwest Pollinators

Ribes sanguineum

Plan ahead for hungry native pollinators who need early-flowering plants like red-flowering currant to survive.

 

April showers may bring May flowers, but what about providing forage for hungry pollinators that need food earlier in the year? To provide large amounts of nectar and pollen in late winter and early spring for emerging bees as well as hummingbirds and other pollinators, to help you endure the gray winter skies and store carbon, and to get the most bang from your buck, add early-flowering native shrubs to your garden. Get new shrubs in the ground preferably in autumn—so the plants benefit from winter rains, and to ensure that you have the early part of a continuous succession of flowers covered.

Here are five early-flowering shrubs (plus one shrubby tree that’s pollinated by wind), listed in order of size from largest to smallest, that naturally occur in large areas of the Pacific Northwest region west of the Cascades. They grow in sun to partial shade, are fairly easy to find at native plant nurseries (as well as nurseries that don’t focus on natives), and are quite easy to grow, provided they are kept adequately moist until they are established (2 to 5 years). All would do well planted in wide, unpruned hedgerows. When choosing any shrub, note its eventual width to be sure you have enough space for it to stretch its limbs and attain its natural form at maturity—and to eliminate future hack jobs by a pruner. 

Buy plants that are responsibly propagated from source material that originated as close as possible to your site. Using such “local genotypes” helps ensure that you get plants that are well adapted to your area and that genetic diversity—which helps plants (and animals) adapt to changing conditions—is preserved. Ask growers and nurseries about their sources.

Salix scoulerianaScouler’s willow (Salix scouleriana): A fast-growing deciduous shrub or small tree. Flowers are soft catkins, larger than horticultural “pussy willows,” and appear in early to mid-spring. Male and female flowers are on different plants, so grow both for seeds. Scouler willow is a larval host plant for several butterfly species. Does not tolerate full shade. Prefers moist soil. 20-30 feet tall by 10-15 feet wide at maturity. 

 

Oemleria cerasiformis

 

Osoberry (Oemleria cerasiformis): A large, arching deciduous shrub or small tree that blooms prolifically in late winter as leaves emerge. Tolerates clay soil well, but does best with some shade (nature places it in the dappled shade of tall trees). Plants are either male or female, so plant several to produce the fruit that birds need. 12-18 feet by 10-14 feet at maturity.

Amelanchier alnifolia

 

 

Serviceberry (Amelanchier alnifolia): A versatile, multibranched shrub with lovely white, fragrant flowers in mid to late spring. Bluish-green leaves turn gold to reddish in autumn. Larval host plant for several butterfly species. Needs well-drained soil with adequate organic matter. Tolerates full sun in cool areas. Doesn’t like competition, so plant other shrubs and perennials at least several feet away. 8-18 feet tall by 6-10 feet wide at maturity.


Red-flowering currant (Ribes sanguineum)
: An upright, deciduous shrub with nearly year-round appeal. Gorgeous, pendulous, lightly fragrant flower clusters (pictured, top) that bloom in early spring are followed by powder-blue berries. Leaves turn golden in late autumn. Larval host plant for butterfly larvae. Controls erosion. Can’t handle excessively wet soils, so be sure soil drains well and plant it away from rain gardens and other drainage areas.  7-10 feet tall by 6-9 feet wide at maturity. More info in this post


Mahonia aquifoliumTall Oregon grape (Mahonia aquifolium)
: A handsome, multitalented evergreen shrub with an upright growth habit. Bursts into flower brilliantly in early to mid-spring, for a long period. Tolerates acidic soils. Has somewhat prickly evergreen leaves, so site it where it won’t be brushed against frequently. 5-9 feet tall by 3-6 feet wide. Will spread slowly. More info in this post.

 

The earliest winter bloomer is the handsome beaked hazelnut (Corylus cornuta var. californica), a beautifully textured, large multistemmed woodland shrub or small tree that grows to 10-20 feet tall by 10-20 feet wide. It is pollinated by wind, not animals. More info here.

After planting
Add a few inches of organic matter as mulch around the shrub (but keep away from trunk) to insulate, keep weeds down, and add nutrients. Fallen leaves work well, as does weed-free compost. If you use wood chips, make sure they aren’t finely ground and/or fresh, and don’t dig them into soil—under-composted chips and bark can deplete soil of nitrogen during breakdown. Later on, simply allow fallen leaves to remain on soil to provide habitat and nutrients.

All of these shrubs are drought tolerant when established (although Scouler willow does best with supplemental summer water), but they will appreciate some irrigation in very hot situations. They should need little to no pruning if they’ve been sited to allow room for their growth.

If you already grow any of these shrubs, I’d love to hear what wild species you’ve seen attracted to them. Or how much they brighten your garden on drab winter days?


© 2015 Eileen M. Stark

To leave a comment, click on post’s title

 

 

 

Northwest Native Pollinator Plants for Late Summer to Fall

Late season pollinator plants

Scientists know that bees are dying for a variety of reasons—pesticides, habitat destruction, drought, climate change, nutrition deficit, air pollution, and so on, which makes us the obvious perpetrator. We can help give back to them (and other pollinators) by growing flowering native plants in our gardens (as well as noninvasive exotics that step in when a native plant isn’t available or feasible), with consecutive blooms from early spring till fall. To provide for many different types of pollinators—from long and short-tongued bumblebees to syrphid flies, hummingbirds, and beetles—offer a variety of flower shapes, colors, and sizes, with smaller plants in groups of at least three of the same species (like a big, obvious “Eat Here” sign). Fragrance is also important for attracting insects to flowers and guiding them to food within the flower, and aiding an insect’s ability to efficiently learn particular food sources.

Below are some native perennials and one shrub that offer food for pollinators from mid or late summer to fall in the Pacific Northwest, west of the Cascades. There are more candidates, but I chose these species because they naturally occur in fairly large parts of the region, are generally easy to grow, and are not too hard to find at nurseries (although you will likely have to call around for availability). I’ve listed them alphabetically with some very basic care guidelines. It’s best to plant them in the fall, just before or as the rain returns.

As always, plan ahead and choose species that fit your light, moisture, and soil conditions, but also choose those that are appropriate to the natural landscape—that is, look to nearby natural areas, and add flora that would likely have grown in your area historically, if possible. You can also check a species’ natural range (to county level) here, or check with your local native plant society chapter or county soil and water conservation district. No fertilizer is necessary and please don’t use any pesticides. Keep them adequately hydrated—by watering deeply and infrequently to promote deep roots—until they’re established (2 to 5 years). Enjoy!

Achillea millefolium var. occidentalis (Yarrow): Perennial. 1-3 feet tall x 1-3 feet wide. Sun to part sun. Not fussy about soil; moist or dry. Spreads by rhizomes or seed. Flat-topped clusters of white, fragrant flowers (pictured below) bloom through late summer. (Not to be confused with the Eurasian Achillea millefolium var. millefolium). Achillea millefolium var. occidentalis

Anaphalis margaritacea (Pearly everlasting): Perennial. 1-3 feet tall x 1-2 feet wide. Sun to part shade. Likes moist soil with good drainage, but can tolerate drought once established. Pure white flowers are often used in dried flower arrangements. Besides providing nectar, it is a host plant for painted lady and skipper butterflies.

Baccharis pilularis (Coyotebush): Evergreen or semi-evergreen shrub. 5-8 feet tall x 6-8 feet wide. Sun to part shade. Tolerates poor soils (but needs good drainage) and is drought tolerant. Flowers aren’t showy and are borne on separate male and female plants (male flowers creamy white; female pale green). Excellent wildlife habitat plant but is deer resistant.

048_Campanula rotundiflora sRGBCampanula rotundifolia (common harebell): Perennial. 1-2 feet tall x 1-2 feet wide. Sun to part shade. Moist to dry, well-drained soil, preferably with a good amount of organic matter. Spreads slowly by rhizomes or seed. Bell-shaped, bluish violet flowers typically bloom through late summer. (pictured left)

Gaillardia aristata (blanketflower): Perennial (short-lived). 1-3 feet tall x 1-3 feet wide. Sun to light shade. Tolerates a variety of well-drained soils; drought tolerant when established. Spreads by seed. Colorful yellow and reddish orange flowers bloom well into fall, especially when dead-headed. Deer resistant.

Solidago canadensis (Goldenrod): Perennial. 2-4 feet tall x 2-3 feet wide. Sun to part shade. Solidago canadensisTolerates wide range of soils; prefers moisture but tolerates drought when established. Spreads by rhizomes or seed. Bright gold, fragrant inflorescences typically bloom well into fall. (pictured right)

Symphyotrichum subspicatum (Douglas aster): Perennial. 2-3 feet tall x 2-3 feet wide. Sun to part shade. Does best in moist soil that is rich in organic matter. Spreads slowly by rhizomes and seed. Lavender-blue daisylike flowers bloom from mid summer until mid fall. (pictured below)

 

 

Douglas aster

 

 

© 2015 Eileen M. Stark

To leave a comment, click on blog’s title

Anna’s Hummingbird Babies: From Eggs to Empty Nest

Anna's hummingbird babies, around Day 19

As I wrote last month, we were extremely fortunate to have a little Anna’s hummingbird build her tiny nest — smaller than an espresso cup — in a rhododendron shrub, just steps from a window. In February, binoculars and camera in hand, we watched and photographed as she finished the intricately woven and structurally sound nest, anchored to a branch with strong and stretchy spider silk, lovingly lined with fur, and carefully camouflaged with lichen. On February 20 it appeared that her beautiful nest was complete and incubation of two navy bean-sized eggs had begun. Mama hummingbirds typically sit on their eggs for 14 to 19 days.

About 18 days later, I saw her perched on the edge of her nest, apparently regurgitating a slurry of nectar from nearby native currant flowers and partially digested insects or spiders (high in protein) into her babies. I couldn’t actually see them at that point since the nest was about eight feet off the ground and they were so small. At this early stage she would feed both nestlings (hummingbirds almost always have two), fly off, and come back with more food within 60 seconds or so. After she and the nestlings had been fed adequately, she’d return and stay on the nest awhile since they were nearly naked and in dire need of warmth.

Later that week we saw her offspring for the first time, with their dinosauric heads and just the start of future feathers. Even at this age, still completely helpless and blind, their instincts are strong: They are able to keep their nest clean by wriggling their little bottoms toward the edge of the nest and squirting their poop outside of it.

Anna's hummingbird babies, around Day 7

Anna's hummingbird and one of her babies, around Day 7

 

Later, about ten days after hatching and when the nestlings’ barbs began to look like feathers, Mom no longer stayed on the nest — during the day, anyway — most likely because her babies now had the ability to regulate their own body temperature. I imagine she was also not too keen on having her underside poked by pointy bills!

Ann's hummingbird and her babies, around Day 12

Anna's hummingbird babies, around Day 13

 

We continued to watch her feed them, first pumping food up into her throat, then aiming her long bill into their gaping orange mouths and straight down their throats. She resembled a sewing machine needle as she repetitively pushed food into them, never spilling a drop. Ouch!

Anna's hummingbird feeding her babies, around Day 18

 

References state that Anna’s hummingbirds fledge within 18 to 28 days after hatching. On the morning of what I believe was Day 23, I watched one of them sit on the edge of the nest and flap his/her wings with such gusto that I thought the time had come. A rainstorm came and went, but they remained in the nest, sitting with their bills pointed directly upwards, nearly vertical; occasionally they’d shake off raindrops but maintained their pose. Brave and undaunted, they also endured fairly heavy wind and a short, but pounding, hail storm.

Anna's hummingbird babies, around Day 22

 

On what was probably Day 24, I saw one of them, for the first time, venture out of the nest and onto the branch right next to the nest. Even though the nest was designed to stretch as the nestlings grew, it was getting tight. Surely they are leaving now, I thought!

Anna's hummingbirds babies, around Day 23

 

They left the nest on Day 25. When they took off I was, disappointingly, in the shower at the time. Just before they left I noticed them preening their breast feathers meticulously, no doubt to make themselves more aerodynamic and ready themselves for life on the wing.

Anna's hummingbird babies, around Day 23

 

Mom feeds them for a week or so post fledging, so they are on their own by now. I still look for them in the garden and high in the trees, but it’s hard to say who’s who—fledglings’ bills and tails are shorter than adults’ and they have no red on their throats, but they may almost resemble female adults by now. Reportedly, the siblings may stay together until autumn, and then they separate for good. Have a good life, sweet babies!

Anna's hummingbird babies, around Day 20

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

UPDATE: March 29, 2017
It’s been two years since I wrote the above post. This year a female Anna has again built a nest in the same shrub, although the nest is harder to see as it’s a little higher up and has more leaves partially blocking our view. I’ve watched the nest as best I can, and judging by what looked like pumping (feeding) movements, I believe at least one of her babies hatched on March 6. Photographing them has been very difficult due to the nest position, as well as the plague of unusually cold, wet weather. In the early part of March I watched her as she searched for insects everywhere in the yard and she spent more time away from her nestlings than the mom two years ago did. This made me wonder if she might be having trouble finding protein (in the form of little insects and spiders), which are essential for the babies’ development, as well as her health. Sugar water or flower nectar alone is completely inadequate.

After about 10 days had passed, I could just barely make out a beak in the nest reaching skyward toward Mama, ready with food. I never saw more than one mouth at a time, which I thought to be a little odd, and wondered if both eggs had hatched. At Day 12 my husband, Rick, managed to get some photos of Anna feeding them, and there is evidence of two mouths, although one is in poor focus and looks like it may not be fully open, even though Mama looked ready to deliver. I was relieved to know that there were two hatchlings, but I continued to see her feeding only one at a time; this worried me because two years ago both of her young were highly visible during each feeding (as the photos above show).

A week later, on March 25, Rick was again photographing the nest and grew concerned when he repeatedly saw her feeding only one baby. With his cell phone taped to a stick, he held it horizontally above the nest while Mom was away and managed to get a short video of the nest. I’m very sad to report that there was only one baby present; the other must have died from lack of protein due to the shortage of insects during the non-stop cold weather. I do not know if the mother, sensing that one was weak and knowing she couldn’t feed them both adequately, chose to stop feeding the weak one so that one would survive, or if the baby was too weak to gape and receive food and eventually died. It’s also slightly possible that the baby was stunted from the beginning (possibly due to too small a yolk). It’s impossible to say for sure, but regardless, it was heartbreaking for this animal lover to realize that someone starved to death right outside her house. I do accept that nature can be harsh—especially during the winter—and I’m glad that the baby didn’t die due to direct human disturbance, but this is just another reason to grow native plants that supply drastically more insects than non-native species.

As I write this, the brave little baby that’s endured the cold still sits alone in the tiny nest that should be filled with a brother or sister. Mom no longer stays on the nest, but she still feeds him/her about every 20-30 minutes. Waiting is the hardest part … waiting for the day that s/he feels strong enough to take to the air and discover the world. I hope I get to see that flight, and I hope it’s on a warm, sunny day.

The baby fledged the very next day, which was a fairly warm, dry one. The following day, curiosity got the best of us. Using a ladder, we inspected the abandoned nest since our nosing around wouldn’t distress anyone. Sure enough, there—at the bottom of the little nursery—was the baby who had died, a dried up little body barely an inch long. Since then I’ve noticed a smallish single hummer in my yard on occasion, and once, while I was walking around the back yard with my little cat in my arms, we stopped to watch this particular bird feeding at blueberry blossoms. S/he grew very interested and circled around us, just 18 inches away from our faces! 

Anna’s hummingbirds typically have 2 or 3 broods per year, and there is another Anna’s hummingbird nest now in a neighbor’s small tree close to a stairway that leads to our back yard. I can’t be sure, but I think it is the mama who nested in our yard, doing her best to raise another couple of healthy chicks.   —ES

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

ANOTHER UPDATE: February 18, 2018
New nest! Maybe I ought to just write a fresh post—this seems to be turning into a hummingbird diary!

It’s one year later and the new nest is in my neighbor’s magnolia tree just above their fence on the property line. Rick noticed it on February 10 and thought she might still be constructing it, but on closer inspection it appeared to be finished. The next day, when Mom was off feeding, he put his phone on a stick to take a short video above the nest, and there they were: Two gleaming white eggs that resemble tiny mint candies. Perhaps the mild winter weather we’d been experiencing (with daytime temperatures around 60ºF!) encouraged this early endeavor, but Anna’s often nest very early in California, their historic home.

There had been a nest in the same tree the previous summer, but it was very difficult to view as the tree was fully leafed out. This new nest is in the open due to leaflessness and proximity (near the end of a branch, just above our driveway and recycling bins), so we’ve got a good view. But the sight is bittersweet right now (Feb. 18): Though magnolia flower buds are developing, they provide absolutely no protection for Mom and her nest. Cold, wintery weather is back and I imagine she’s fairly miserable. But I have to remind myself that she’s a tough, stoic little bird, she has the ability to go into torpor at night to conserve heat, and her eggs have not yet hatched. I’m hoping they will stay inside their little life support systems until later this week, when the temperatures will be a bit higher and insects will likely be easier for Mom to find.

February 19: She made it through a cold, snowy night and she’s still on the eggs. The red-flowering currant shrubs haven’t started blooming, so my sugar water feeders are well-stocked and are put outside soon after sunrise (to prevent freezing). Since we don’t know when the eggs were laid, they could hatch anytime between now and the end of the month.

Anna snow

One snowy morning …

 

February 20: Watching from my driveway, I now see her feeding someone, so at least one has hatched. But we’re in the middle of a winter storm that’s brought snow, and temps that will dip into the 20s tonight. I worry because insects and itsy-bitsy spiders are not plentiful when it’s so cold and the most common cause of nestling mortality is lack of protein (as we painfully learned last year). Hopefully Mom will persevere and be able to get both of them fat and sassy. Will keep you posted!

February 23: The nestlings are now at Day 3, and as far as I can tell, they’re doing well. Mom is definitely away from the nest longer than the first time I watched a hummer nest (as much as 7 minutes), but she comes back every couple of minutes during her forages to make sure no predators are near the nest. Standing on a ladder, I can now partially see the babies’ heads as they are fed.
Day 3

 

 
 

March 1: Sadly, my fear has been realized: One of the babies has died. For the past couple of days I’d only been able to see her feed one nestling; yesterday we took a video with a phone taped to a stick and it’s clear that there is now just one alive. Sigh. Anna’s hummingbirds’ historical range is from Baja to San Francisco but they’ve expanded their range north reportedly due to artificial feeders and the planting of nonnatives that bloom when natives have finished. Unfortunately the expansion sometimes has deadly consequences.

The remaining baby looks okay. It’s still quite cold but will warm up a bit soon. The red-flowering currant blossoms should be opening any day now and insects should be easier to find.

March 7: It’s warmed up a bit and the baby is definitely growing. Today his/her eyes are open! Though it’s not very warm, Mom is staying off the nest during the day, but she’s on at night since it’s so cold and the little one hasn’t a sibling to snuggle with.  Day 14 or 15

 

March 8: Today is very windy and rainy but Mom is on the nest most of the time. This weekend will be much better for Baby: warmer, dry, and sunny—just what’s needed.

March 16: Major growth is happening, but I think this baby will be on the nest for another week or more. This is Day 23, a day when many hummers are able to fledge, but since this baby had such a rough start in life, s/he will likely need much more time in the nest. The nights have been quite cold but feathers are filling in.
Day 24

March 23: Baby’s feathers are really filling in and s/he looks softer, rounder. Yesterday, after preening (or perhaps biting at parasites) Baby stretched his/her wings and was almost able to lift off the nest! At nightfall, Baby had to endure a hail storm and I think it rained through most of the night … if only s/he wasn’t stuck in that nest and could find some evergreen shelter during this nasty weather, as older birds do! I keep hoping for some warm spring weather. Even though Baby is now 30 days old, the bill and feathers need to grow more and I estimate that it will be 3 to 4 days before fledging.
Day 30
Day 30

March 25: My heart is heavy with grief today. The stoic little baby who lost his sibling and tolerated so much harsh weather is dead. I believe he died on Friday night during some nasty cold rain and hail. Saturday I saw him hunkered down in the nest to keep warm, or so I thought … while taking photos today I found him in the same position and not moving. What a terrible little life he had, unable to leave the nest during what must have been a nightmare to him. It’s also possible that something happened to Mom, but I suspect the former, since nest mortality is high. We’ll never know. I buried his tiny little body with a sprig of red-flowering currant flowers, something he would have loved. R.I.P sweet little one.

[Addendum: It is two months later, and for the first time I’ve witnessed the feeding of a baby who had apparently left the nest that day. Tiny little “peeps” were heard coming from our fig tree, but I couldn’t locate the baby until Mom swooped in to feed. After Baby was fed she left, but returned about 20 minutes later when the call for food resumed. This went on for the rest of the day, with Baby in the same tree. The same peeps were heard for many days afterwards, but in different trees. Apparently this baby’s sibling also must have died (hummers typically lay two eggs), but s/he looks strong and healthy.]


© 2018 Eileen M. Stark

 
To leave a comment, click on blog’s title

Ban Neonicotinoids in Portland

painted lady butterfly

The most widely used pesticides in the world, neonicotinoids (often called neonics) are a highly toxic, pervasive, relatively new class of insecticide. Following massive bee die-offs from neonic applications in the U.S. and Canada, last year Eugene became the first U.S. city to ban the use of neonics from city property. Similar bans in Seattle, Sacramento, and Spokane quickly trailed, and now Portland’s City Council is considering comparable—and crucial—affirmative policy at the local level, since higher government continually fails to offer protection from this growing environmental threat. The U.S. Fish and Wildlife Service decided last year to phase out neonics in its wildlife refuges, making it the first federal agency to restrict neonics, but the U.S. Environmental Protection Agency has yet to act.

Hundreds of studies indicate that neonics are wreaking environmental havoc: They not only disastrously kill or debilitate native bees, honeybees, and other pollinators like butterflies and moths, but also other ecosystem members such as birds, aquatic species, and mammals. Neonics are systemic, taken up through a plant’s vascular system and exuded in the pollen and nectar. Even miniscule amounts adversely affect central nervous and immune systems, cumulatively and irreversibly. If a victim such as a bumblebee isn’t killed outright, its failed immune system will succumb to ostensibly “natural” parasites and pathogens like Bombus bifarius on Aster foliaceusfungal, viral or bacterial infections. Birds—the majority of which consume and feed their young insects—may be poisoned directly or go hungry due to a lack of insect biomass; scientists predict widespread reproductive dysfunction in birds due to neonic exposure.

Since neonics are water soluble, they are very prone to runoff and groundwater infiltration where they accumulate and persist for any years. Aquatic contamination has reached toxic levels in some areas and is expected to cause serious and far-reaching impacts on aquatic food chains.

The cumulative, persistent, and irreversible nature of neonics ought to raise some serious red flags. Human children may also be at risk to this neurotoxic class of pesticides due to their developing bodies and immune systems and tendency to be exposed to problematic substances while playing outdoors.

What we can do

We can voice our support for the proposed ordinance—which also recommends that local retailers label plants, seeds, and products containing neonics—by contacting Portland’s mayor and commissioners by March 31. Personally, I’d love to see this ban go further, as would Commissioner Amanda Fritz, but a ban on city property is a good first step.

We can also take action at home by eliminating pesticides and growing beautiful wildlife-friendly gardens. Besides chemicals, another major threat to wildlife is the lack of natural foraging areas. In our own yards we can attract and feed pollinators by including a variety of nonhybridized—preferably native—plants that will collectively flower from early spring through fall. Native plants that naturally occur in our region are best for all indigenous fauna because they supply the food and shelter that wild species require to survive and they need no synthetic pesticides or fertilizers.

 

© 2015 Eileen M. Stark

To leave a comment, click on blog’s title