Stop the Poisons: Safe Alternatives to Rodenticides


They’re being called a “modern day DDT”. Like DDT (outlawed in 1972), anticoagulant rodenticides are weapons of destruction. They kill brutally, slowly and indiscriminately, accumulate in fatty tissue, and persist a long time in the environment. Used by homeowners, farmers and exterminators, they are a serious threat to any living being that accidentally ingests them—wildlife, companion animals, and humans (especially children), alike.

Movement through the food chain
Both “second-generation” and “first-generation” anticoagulant rodenticides, the most common rodenticides, were designed to silently block the vitamin K cycle, which is essential for blood clotting. Although the “first-generation” are just as deadly if consumed often, the “second-generation” products have greater potency and build to higher concentrations in rodents, so are more lethal. These “super-toxic” poisons, which have long half-lives, cause rodents to uncontrollably hemorrhage to death—but only if they’re not preyed upon first. Because they’re so slow-acting, rodents may ingest poisons multiple times, which causes residues to accumulate in their bodies to levels many times greater than the minimum lethal dose, which exposes rodent-eating scavengers and predators to large amounts of poison. A poisoned animal can and does lead to indirect secondary (and sometimes tertiary) poisoning of other animals. The recent tragic death of Flaco, the famous Eurasian eagle-owl who was released from his cage at the Central Park Zoo, died in part from poisoning.

Victims do not die quickly; as the poison takes hold, rodents who ingest it continue to move about for days, but more lethargically, so that they become easy prey for dogs, cats, birds, and native mammals like the little raccoon I found on a sidewalk in my neighborhood who apparently had died a slow and excruciatingly painful death by excessive bleeding. Besides other carnivorous or omnivorous mammals such as bobcats, coyotes, foxes, skunks, cougars, bears, and companion animals, these dangerous poisons have spread throughout the food web and inhumanely kill reptiles like snakes and raptors such as owls and hawks—the very animals who can and should be preying on (healthy) rodents. Tertiary poisoning happens when a predator eats another predatory species that’s been poisoned secondarily, such as an owl who eats a poisoned snake who ate a poisoned mouse. And secondary injuries, such as lacerations, can become deadly because victims’ blood has no ability to clot. Even insects, such as bumble bees that often use abandoned rodent nests, can be killed.



Anticoagulants can quickly move through the food chain—in California’s Santa Monica Mountains, the majority of cougars, bobcats and coyotes reportedly have tested positive for exposure and many have died due to poisoning or secondary disease brought on by a weakened immune system. In Africa, raptors are disappearing at a “shocking” rate, partially due to poisons. A 2020 study at Tufts Wildlife Clinic found that 100 percent of hospitalized red-tailed hawks had rodenticides in their livers, and all but one contained brodifacoum, especially deadly to birds. None of the hawks survived.

Another study in 2023 at Tufts revealed the horrors of another rodenticide, a neurotoxin called Bromethalin that can bioaccumulate in raptors. It had already been the cause of severe illness in San Francisco’s Telegraph Hill parrots and “works by interfering with a metabolic process called oxidative phosphorylation, or how an individual cell creates energy. When that process is disrupted, the cells can’t produce the fuel to keep their normal processes functioning correctly, such as regulating fluid balance, or the amount of fluid inside the cell versus outside of the cell. When the cell can’t regulate that fluid balance anymore, it causes accumulation of fluid in abnormal spaces.”

In addition to wildlife, the use of these rodenticides can expose companion animals, such as dogs, who can be poisoned directly when they eat bait from boxes or get into unsecured packaging in their homes. Homeless or feral cats, as well as those allowed to roam and hunt freely also can become poisoned. Victims — no matter the species — suffer horribly, and for many, many days.

Regardless of how any type of rodenticide is distributed — by homeowners, professional exterminators, or HOAs — we, our companion animals, and local wildlife are at risk of exposure. Poisons are no less dangerous when packaged in tamper-proof, sealed bait boxes. The harm they cause far exceeds their limited, alleged benefits.

Room for improvement
Although we’re slowly seeing some positive strides, we still have a long way to go in eradicating these dangerous substances. Late last year, a new U.S. Environmental Protection Agency biological evaluation found that rodenticides harm more than 130 endangered species — including Florida panthers, black-footed ferrets and California condors — and are driving toward extinction at least 73 other species. Because of this, the EPA has proposed new measures to reduce unintentional wildlife poisonings and increase protections for endangered species. However, according to the Center for Biological Diversity, data from past rodenticide restrictions indicates that the new protections fall far short and will continue to leave many wildlife species at risk because, as mentioned above, predators and scavengers consume poisoned animals. Certainly any reduction of harm from these poisons is a good thing, but we need to push for much stricter regulations to ensure that both wildlife and people are safe from them. Learn more at the Center for Biological Diversity.

The good news: There are many things we can do to prevent even the thought of using poisons.
If you do have a serious problem, humane prevention is crucial:

  • Learn where rodent are coming in and plug up holes (if you need to put rodents outside, use a live trap).
  • Eliminate sources of food, water, shelter.
  • Cover or enclose veggie gardens with wire.
  • Remove ivy from buildings.
  • Clean up/seal up any outdoor food for dogs, chickens, horses, etc.
  • Remove bird feeders.
  • Clean up/seal up trash. 
  • Clean barbecues following use.
  • Prevent or remove rodents’ access to fruit and nut trees by trimming branches away from fences, roofs, and other accessible places; attach tree guards on tree trunks to prevent climbers.
  • Speak with neighbors who may be contributing to the problem.
  • Install rodent birth control, the future of humane, non-toxic coexistence!
  • Nurture a native plant garden, to attract natural predators like raptors and snakes.

And just because we see a rat or mouse doesn’t necessarily mean that our yard is infested: In the 22 years I’ve lived in my house, I’ve seen perhaps a couple of mice and four or five rats, all of which arouse my curiosity and interest, not revulsion or contempt. I’ve also noticed a few snakes and many raptors who need such food. Several rats had also been seen this past year at the community garden where I grow food, but raptors in the vicinity apparently did what they do best and there’s been no sign of the rats since. Raptors and other predators are the answer, and there is no such thing as a safe rodenticide. For more information, please visit Raptors Are The Solution (RATS).

© 2024 Eileen M. Stark

Study Confirms Neonic’s Deadly Harm to Birds as EPA Ignores Facts

The American Bird Conservancy (ABC) recently released an updated, piercing report that confirms the continual decline of wild birds — as well as beneficial insects and many other animals — due to the uncontrolled use of highly toxic neonicotinoid pesticides. It’s a lengthy read, so I thought I’d offer a fairly brief synopsis to those who appreciate and support biodiversity.

Back in 2013, the ABC produced its ground-breaking paper, “The Impact of the Nation’s Most Widely Used Insecticides on Birds” (Mineau and Palmer 2013), which warned of the catastrophic risks that these ambulant and persistent insecticides create for both terrestrial and aquatic ecosystems, as well as the likely repercussions on wildlife who depend on those ecosystems.

Fast forward ten years, and “Neonicotinoid insecticides: Failing to come to grips with a predictable environmental disaster” (Mineau and Kern 2023) reveals that little has changed, except that the quantity used is hidden from us. The report examines the recent science that echos earlier alarm calls and describes the completely inadequate regulatory response by the EPA and other regulators. According to Hardy Kern, one of the study’s authors, “Some states and agencies have taken minimal actions, but we have a long way to go before these chemicals are no longer a threat to birds, native pollinators and aquatic systems.” A recent comprehensive study in Europe found pesticide and fertilizer use to be “more dramatic than forest alterations, urbanization, and climate change”.

Developed by Bayer and Shell and introduced in the early 1990s, neonicotinoids (“neonics”) have been touted as safe and more benign than any previous pesticide groups. They quickly became popular in pesticide markets worldwide and today they are the most commonly used insecticides (where they haven’t been banned). The neonics group is a synthetic neurotoxin chemically similar to nicotine and includes acetamiprid, thiacloprid, thiamethoxam, clothianidin, imidacloprid and others. They are widely used in agriculture (more than 140 types of crops, including rice, wheat, corn, sunflowers, cotton, nuts, soybeans, fruits and vegetables), in commercial nurseries, and in urban areas on golf courses, parks, gardens and lawns, in insect sprays, and flea and tick veterinary products. (Last month, in response to a Center for Biological Diversity legal petition asking that Seresto flea collars — which have been linked to more than 100,000 reports of harm or death — be pulled from the market, the EPA responded by only requiring that warning labels be placed on the collars.)

Neonics are applied as a soil injection (“soil drenching”) and tree injection, as a foliar spray, and as a seed coating (the most common application). As a plant grows, the systemic pesticide permeates all cells within roots, stems, leaves, pollen, nectar, sap, fruit, and honeydew. In addition to killing what are considered pest insects, neonics indiscriminately poison non-target beneficial species like bees, butterflies and other pollinators, including hummingbirds. An estimated 96 percent of land birds are insectivorous and must feed their young insects (which may be poisoned), and seed-eating birds commonly consume spilled seeds loaded with neonic residue. They can also encounter neonics by inhalation of vapors, skin contact, and in their drinking water. Dust generated from pneumatic seed planting machinery can also kill flying insects directly, and it can disperse off-site at seeding time (making additional plants acutely toxic), and contaminate soil. In the soil, neonics persist for months to years, with drift, irrigation or runoff carrying them long distances, eventually contaminating new soil, plant life and water supplies. Only two to five percent of most seeds coated with neonics make it into a target plant, leaving roughly 95 percent in the soil, where it can contaminate the nests of native ground-nesting bees (70 percent of native bees nest in the ground).

When consumed in lethal doses, neonics permanently bind to nerve cells, which typically causes uncontrollable twitching and shaking followed by paralysis and eventually death. But even small, nonlethal doses can cause severe debilitation to victims’ immune, reproductive, navigation, and nervous systems. Birds may become so incapacitated that they don’t eat, migrate, reproduce, and become paralyzed or experience seizures. Researchers have found destructive reproductive effects at concentrations much lower than the thresholds set by regulators: The ABC found that ingesting just one-tenth of a contaminated corn kernel (with any of the neonics) per day during egg-laying season can negatively affect bird reproduction. Appallingly, “A single corn kernel coated with a neonicotinoid can kill a songbird. Even a tiny grain of wheat or canola treated with the oldest neonicotinoid, imidacloprid, can poison a bird.” The ABC authors expressed, “Based on recent studies, we have increasing concerns over reproductive and sub-lethal effects resulting from low exposures in farm fields … Given that exposure is often season-long, this raises the specter of significant effects on a large number of bird species.”

Due to widespread use, neonics have caused and continue to cause extensive ecosystem contamination, including watersheds, groundwater, and irrigation water. Neonics’ water solubility means that they travel easily in surface runoff, contaminating aquifers and other aquatic environments—residues have even been found in seabirds’ feathers and raptors, and there is proof that they kill fish and other aquatic animals. A U.S. Geological Survey study found that neonics polluted more than half of the streams in the U.S. In addition, bats are directly and indirectly harmed, and birth defects have been found in white-tailed deer. If you’re wondering about harm to humans, the NRDC’s “Potential Risks to Brain and Sperm” article details the health impacts, including the possibility of creating even more toxic compounds when neonics are mixed with things like chlorine at water treatment plants. The good news is that organically-grown foods are mostly neonic-free.

Unwillingness of regulators
Regulation of these chemicals is extremely inadequate. The ABC authors say, “The U.S. is far behind the European Union and a few Canadian provinces in responsible regulation and mitigation. The main uses of neonicotinoid insecticides go against fundamental principles of integrated pest management. Alternatives to these chemicals do exist … We believe they have failed in the execution of their mandate and in preventing the ongoing environmental tragedy that neonics represent.”

Possibly the worst debacle of regulators is that seeds coated with neonics are not regulated at all; they’re included in the “Treated Item Exemption” of the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA), which, according to the ABC authors, means that most neonic applications are not counted in usage estimates. In 2017 a number of NGOs petitioned the EPA to remove seed treatments from the exemption. It took the EPA, which ignores the advice of its own scientists, five years to deny it. Earlier this summer the groups sued the EPA.

The U.S. government has also lessened the amount of data available about pesticide use and proliferation to scientists and the public. Earlier this year the U.S. Geological Survey cut the amount of data it collects in its National Pesticide Use Map, and beginning in 2024 its report will be released only every five years, instead of yearly. It’s also shrunken the number of pesticides it monitors from 400 to 72, partly because the USGS purchases data from a private company, which stopped including seed treatments in usage stats around 2015. The USGS says that “seed coatings are too difficult to reliably source information on and, therefore, are not included in national pesticide-use estimates.” They’re also left out of National Water Quality Assessment maps.

So, no one knows how much neonics are used on seeds. A USGS graph of clothianidin usage in the 2023 ABC report shows that over 3.5 million pounds were used in 2014 (mostly on corn), and in 2015 the usage was slightly more than 500,000 pounds. Of course this doesn’t mean that less clothianidin was used; only that seed treatments were dropped from estimated use.

A 2019 study found that U.S. agriculture is nearly 50 times more toxic to insects than it was 25 years earlier and neonics are responsible for a whopping 92 percent of that atrocity—this is especially heinous considering the “insect apocalypse” that experts predict. Despite their rampant use, neonics can actually make pest problems worse because not only do they kill beneficial wildlife; they also kill soil microbes that improve plants’ health, durability, and crop yields. And, there is even evidence that neonics reduce crop production. In the U.S., there is no law that requires manufacturers prove that their product works. Speaking with National Geographic, Kendra Klein, study co-author and senior staff scientist at Friends of the Earth U.S., said, “We have four decades of research and evidence that agroecological farming methods can grow our food without decimating pollinators.”

Are neonics the new “Silent Spring”?
North America lost more than three billion birds (even species once considered common) between 1970 and 2018 — 29% of 1970 abundance — due in part to the ubiquitous use of neonics. Even the EPA confirmed that the use of imidicloprid, clothianidin, and thiamethoxam) harm roughly 75 percent of all endangered plants and animals. According to the Center for Biological Diversity, there’s been horrendous harm to imperiled species by all three insecticides, such as “all 39 species of endangered amphibians, including the California red-legged frog, as well as rusty patched bumblebees, whooping cranes, chinook salmon, northern long-eared bats and orcas.” The American bumblebee, once the most commonly observed bumblebee species in the U.S., has declined by an estimated 89 percent in just the past 20 years. Clearly, neonicotinoids are one of the most dangerous, toxic classes of pesticides that pose atrocious longterm threats to biodiversity. We’re in the midst of a harrowing extinction crisis with beneficial insects, birds, aquatic life, and mammals dying off in appalling numbers and neonics are a major, reckless threat that the earth does not need. “Neonics may not bioaccumulate in organisms and biomagnify in food webs as did DDT and other organochlorine pesticides of old, but they appear to be as widely distributed in the broader terrestrial and aquatic environments,” according to the ABC report’s authors.

Neonics are mostly banned in the EU (even “emergency” uses have been overturned in court) and parts of Canada (Ontario and Quebec require a prescription to use neonics to coat seeds, which has drastically reduced their use). Although a few states in the U.S. have passed legislation that restricts the use of neonics (but doesn’t eliminate them), and other states are beginning to take action, only severe restrictions by the EPA will protect ecosystems, biodiversity and human health from these noxious, unnecessary chemicals before it’s too late.

In July of this year, Oregon’s Senator Jeff Merkley introduced the Pollinator-Friendly Plant Labeling Act, which would require the Department of Agriculture to create a certification program for plant producers to certify that their plants are not treated with pesticides or substance not approved for use in organically-grown products that are harmful to pollinators. Producers who choose to participate in the program would be able to use a “USDA pollinator-friendly” label on their plants and products. It’s a minor action, but is a step in the right direction.

In the home garden
The Northwest Center for Alternatives to Pesticides states, “Neonicotinoids are found in hundreds of products sold over the counter under various trade names. Many of these are designed for individual home and garden use. One of the most toxic neonicotinoids to our native bees — imidacloprid — is commonly applied to gardens, flowerbeds, shrubs, and trees in urban and residential areas.” According to the Xerces Society, “even when used according to printed instructions, garden products containing neonicotinoids can be applied to plants in concentrations dozens of times greater than on farm crops [sometimes at concentrations of as much as 120 times]. This means that bees can be exposed to lethal doses of neonicotinoids in gardens. Even if bees are not killed outright, smaller (non-lethal) doses can impact their health.” Remember that labels do not indicate that they are harmful to pollinators, so it’s important to either not buy such products or be sure to read ingredient lists (Imidacloprid, dinotefuran, clothianidin, and thiamethoxam are all neonics found in garden products). This Xerces Society brochure explains how to protect pollinators from neonics.

What you can do:

  • Buy organically-grown foods, seeds, bird-friendly coffee, and other products whenever possible (they’re not always much more expensive). If feasible, grow some organic produce at home. Find a list organic seed companies here.
  • Shop at plant nurseries that don’t use neonics (always ask if you’re unsure).
  • Don’t buy/use products that contain neonics (be sure to read labels).
  • Create pesticide-free, safe outdoor spaces using regional native plants that will encourage wildlife such as native bees, butterflies, birds, and other beneficials.
  • Ask your state and federal legislators to advance laws that eliminate (or at least severely restrict) pesticide use.
  • Email the EPA to voice your concerns about the lack of regulations on pesticide-coated seeds: pesticidequestions@epa.gov
  • Watch Beyond Pesticides’ short video for more info on toxic seeds and check out ABC’s fact sheet.

© 2023 Eileen M. Stark

When Death Supports Life: Trees, Woodpeckers, and Biodiversity


As sad and full of dread as I am about the impending loss of a giant 90-year-old American elm street tree next door, the life that the dying tree supports makes its demise seem much less calamitous. In early March we noticed the familiar tap-tap-tap of a woodpecker on a nearly vertical limb about 40 feet above ground. There, perched on thick, rough bark, was a male downy woodpecker in the process of crafting a perfectly round hole. Since it appeared to be at least two inches deep at that time, I figured that he and his mate had begun excavating the cavity at least a week earlier. The following week the pair ambitiously began work on a second hole, a quarter way around on the same limb, but facing north. Another few weeks passed and we observed them chiseling out yet another hole, this time just below the first one, facing eastward. The branch is angled slightly downward, which keeps out rain and may be less obvious to predators.

What’s with all the holes? Woodpeckers—expert woodworkers of the avian world—including the downy, hairy, pileated, flicker, and many others, hollow out separate chambers for nesting and roosting and, as you’ll read further on, are considered “keystone species” for their crucial role in creating habitat for other woodland species who depend on dead and dying trees in the landscape.

Late in April, it became clear that the third chamber — its depth now at least as long as the birds themselves — would become their little nursery. Excavation of the gourd-shaped cavity continued, but there appeared to be little activity as the month progressed, at least to our eyes and ears, grounded 40 feet below during a very wet, cool spring that kept us indoors more than usual. It wasn’t until the second week of June, when our neighbor told us of baby bird sounds coming from the cavity, that we realized what they’d been up to.

Why snags are essential habitat
With their rotting wood, hollow cavities, broken branches and loose bark, dead and dying trees — known as snags — may actually provide more varied habitat for all sorts of creatures than when they were alive. In addition to providing vital housing for many types of insects (including some pollinators), cavity-nesting birds (around 80 species in North America), amphibians, reptiles, and small mammals (including bats), they provide food and open perches, and double as storage lockers. Woodpeckers also use snags to communicate during breeding season. For species that must roost in cavities during winter, insulated roosting cavities within trees are essential for them to be able to escape frigid temperatures; it can mean the difference between life and death.

But they can’t use just any old tree. A study in Washington’s eastern Cascades found that cavity-excavating birds preferred trees with significantly soft interior wood. “The researchers also found that at-risk species were nesting within burned areas where up to 96 percent of the trees had unsuitably hard wood. This suggests that many trees and snags previously considered suitable for cavity-excavating birds actually may not be.”

The availability of snags falls far short of the need as forests are increasingly decimated and development runs amok; they’re especially rare in urban areas. Removing them steals critical habitat, even if their wood is unsuitably hard. Whenever possible, allow snags to remain in low activity areas that won’t be a problem should they fall apart; when they do they’ll continue to give back in the understory. If safety is a concern but you want to retain a dead tree’s benefits, consult an arborist to shorten the trunk and any branches that might pose a problem (but retain at least 15 feet of height). If you already have a snag, retain or add native shrubs near its base—they will help keep it stable and protected from weather extremes and provide connectivity, leafy cover, and additional food for wildlife.

The Washington Department of Wildlife has more detailed info on these “wildlife trees” and the Cavity Conservation Initiative has an enchanting video that documents, up close, the lives that they support.

Back to the downy nursery story
After we learned of the nestlings, my husband began photographing the adorable babies and their parents, who worked tirelessly to provide them with insects to eat. The nestlings’ voices were loud and strong and photos revealed that they were all male (with little red caps!), and nearly old enough to fledge. Some sources say it may occur at 18-21 days after hatching, although Audubon says 20-25 days; regardless, we knew it would be soon, so we arose very early for several days, in the hopes of witnessing the fledging event. It wasn’t early enough though, because on our third day of morning observation, the loud chirping and queeking heard earlier in the week had dwindled to just one voice: In other words, we missed the main event. Disappointed, we reminded ourselves that the remaining baby’s voice offered hope that we’d at least be able to watch him leave the nest. Why the delay? Many birds, including the downy, begin incubation when the last or second to last egg is laid. Judging by his resistance to leave when the others left, this remaining nestling was likely a day younger, so incubation probably began the day before Mom laid his egg.

We decided that the next day was the day that he’d fledge and since we didn’t want to miss it, we got up at just after five o’clock. For nearly four hours we took turns watching, waiting and photographing while his parents occasionally fed him. They also had their other young to feed, but I imagine he wasn’t much trouble since he stayed put, unlike his brothers who were out in other trees, far enough away that we rarely heard them.

But like the previous day, Junior stayed put. Perhaps he was just too scared to venture out into the world, so we certainly couldn’t blame the little guy. Surely he would leave the next day! We arose early and found he was still at the nest entrance. We checked on him periodically as we fed the cats, made coffee, and had a little breakfast. At 8:05 I checked and he was still at the entrance, so I selfishly went inside for a snack. When I checked ten minutes later I found he had taken to his wings for the first time — and I missed it!! But a little later I heard him in our backyard’s Douglas-fir tree and saw Mom or Dad fly to feed him. In all likelihood, they’re still in the area, staying hidden with their parents busily feeding them, and will remain so for several weeks until they are able to secure food on their own.


Woodpeckers’ crucial connection to others
I gaze up at the holes that lead to the cavities, now silent and empty, and wonder about other species that might benefit from them. Woodpeckers are primary cavity excavators and reportedly do not use nests more than once (although they may nest in a new cavity in the same tree in subsequent years). [UPDATE, June 2023: The sources that state that Downy woodpeckers don’t reuse nest cavities are incorrect, because this year another pair (or perhaps the same parent or parents) are using the exact same cavity.] But their power-drilling labor facilitates unintentional links to other species known as secondary cavity nesters who cannot excavate their own nest sites or roost sites or may have trouble locating other natural cavities (created by broken branches or decayed wood) or artificial nest boxes. Chickadees and nuthatches also may excavate nesting cavities themselves, but they are not considered strong excavators.

Secondary cavity-nesting birds — including bluebirds, tree swallows, kestrels, some wrens, and many owl species — as well as small mammals such as bats and flying squirrels, may utilize abandoned woodpeckers’ cavities. Studies show that areas with a rich diversity of tree-cavity excavators, in conjunction with snags and other forest elements, maintain a high biodiversity of secondary cavity nesters, as well as other forest birds. In a nutshell, woodpeckers play essential keystone roles, are indicators of ecosystem health, and help other species survive.


© 2022 Eileen M. Stark

Pacific Northwest Native Plant Profile: Western maidenhair fern (Adiantum aleuticum)


It’s a drizzly Sunday in June, one that requires a couple of sweaters to keep me warm. But I can’t complain when I see so many native plants thriving, obviously in their element during this cool, damp spring—ferns, wild ginger, fairy bells, goat’s beard, vanilla leaf, and many others. Western maidenhair fern (Adiantum aleuticum), in particular, which can be found in nature basking in the mist of waterfalls, appears stunningly luxuriant right now. I watch the lush fronds of a plant in my front yard, now 20 years old and nearly three feet tall and four feet wide, move silently with the slightest breeze. “Tender and delicate, but perfect in all their details, far more than any lace work—the most elaborate leaf we have,” was the way Thoreau described ferns.

If you’re wondering about Adiantum aleuticum’s genus name, it comes from the Greek adiantos, meaning unwetted, in reference to its water repellent foliage. The species name refers to the Aleut indigenous peoples of the Aleutian Islands. Although this fern was previously known as a subspecies of Adiantum pedatum, subtle morphologic differences led to its reclassification as a separate species in the early 1990s. Also known as “five-finger fern”, the common name “maidenhair” may refer to either its glossy, dark, smooth stalks or the finely textured dark root hairs that grow from a short, stout rhizome.

How it grows
A highly textured perennial with an airy, delicate-looking structure and fine-textured deciduous foliage, Western maidenhair fern grows mainly at low to middle elevations in the shady understory of moist forests and ravines, along stream banks, in rock fissures near flowing water, and even on talus slopes. It can be found in southern Alaska and the Aleutian Islands, British Columbia, Washington, and Oregon, as well as parts of California, the Rocky Mountains, and a few disjunct populations in northeastern states and Canada.


Each dark brown or purplish-black stalk (aka petiole or stipe) grows up to 30 inches in length and forks at the top into two, from which several others emerge in a fanlike pattern. Feathery pinnae (leaflets) are made up of 15-35 fan-shaped or oblong segments (pinnules), each 10-25 mm long with jagged apical margins. Like other ferns, it reproduces via spores as light as fairy dust. Spores are produced by crescent-shaped sori on the underside of pinnules, covered by in-rolled leaf margins. They can be produced during most of the growing season, but mostly in summer. For detailed info on how ferns reproduce sexually, wander over here.

Wildlife value
Lively green foliage provides microhabitat, shelter and resting places for arthropods, amphibians, birds and other small creatures who frequent the forest floor and may in turn supply food for others. Maidenhair fern may even provide perching spots for little birds who have just left the safety of their nest and are figuring out what to do next (pictured, right)! As winter approaches, the plant deteriorates, covers the soil and eventually adds nutrients following decomposition.

Try it at home
Native ferns deserve space in our landscapes. Besides being important elements of habitat for native wildlife, they might be the best choice for shady, damp spaces that are difficult to fill. Maidenhair fern is easily grown in shaded, moist areas with soil that’s somewhat acidic, high in organic matter and drains well, so consider it in beds, borders and woodland gardens with dappled shade to full shade. In hot areas, be sure to provide enough moisture, especially before and during excessively hot periods; hot afternoon sun will scorch leaves. Space plants two to three feet apart, or intermingle them with other plants that have similar needs, allowing for a mature width of about three feet. Don’t plant crowns too deep. Reportedly, maidenhair fern is deer resistant.

Grab a partner
In the Pacific Northwest, west of the Cascades, this lovely fern will do well in the company of others in the Western hemlock/Douglas-fir plant community, including western redcedar, vine maple, trillium, sword fern, deer fern, false solomon’s seal, stream violet, western meadowrue, goat’s beard, oxalis, piggy-back plant, foam flower, wild ginger, and many others.

© 2022 Eileen M. Stark

Five Ways to Make Your Yard More Biodiverse

Olive clubtail dragonfly resting on Mountain ash (Sorbus scopulina).

 

Every 30 seconds in the United States, a football field-sized chunk of natural area disappears due to development, according to research from the Center for American Progress. Most of the natural areas lost in the past two decades were on privately-owned land, which accounts for about 60% of all land in the country. Clearly there’s much work to be done, since only 3% of protected areas in the U.S. are on private land. Currently, only 12% of all U.S. land is protected, which is very bad news for biodiversity. 

Scientists see the goals set by the International Convention on Biological Diversity — protection of a mere 17% of land and 10% of oceans by 2020 — as completely inadequate to handle the Sixth Mass Extinction and the climate crisis. To stop the crumbling of biodiversity — defined as all the organisms on earth, well as the diversity of ecosystems in which they are found, and the genetic diversity within each species — efforts are now behind “30×30”, a global goal to protect 30% of Earth’s land and water by 2030.

President Biden issued an executive order soon after taking office that requires agency leaders to submit input and strategies for how the feds can conserve at least 30% by 2030. Reversing the cuts made by the Trump administration and targeting expansive areas will certainly have the quickest effect, but all important habitat ought to be saved or restored. If you feel hopeless or sickened by the extinction and climate crises made worse by unrestrained development, even a 30 by 30 foot space at home will help. We can’t put it off any longer.

Here are some objectives as you move forward: 

1. Focus on local native plants after removing invasives. There’s nothing terribly wrong with growing a few of your favorite plants—for example, I love certain clematis vines and irises, and I grow organic food to eat. But those plants don’t provide much, if any, benefit for wildlife, so a large portion of the remaining plants I’ve chosen are native species, most of which belong in my area and might grow together in their natural state. Besides being low maintenance (when properly sited), they are absolutely essential to creatures who developed special relationships with them over millennia.

Native species are superior to introduced plants not because they’re trendy or due to some prejudice or because I say so. Simply put, native plants depend on native wildlife and vice versa (when they are in the appropriate place—that is, areas where they evolved together). They’re adapted to local environmental conditions and their value is not based solely as a resource for humans or on appearance (although their beauty is remarkable!).

Plant diversity is strongly associated with species richness, including healthy insect-dominated food webs. As the essential structural and functional base of many of the world’s ecosystems, most insects are “specialists”—they can only survive with certain species of plants that they evolved with (as opposed to “generalist” species that can use many plants). For example, butterflies and moths need certain host plants that provide food for their young, and many native bees forage for pollen only on specific plants at specific times of year. Myriad other insects are able to use only specific native plants; if those plants aren’t around, the insects’ decline or disappearance adversely impacts ecosystems and other animal populations since specialist and generalist insects and other arthropods supply food for other wildlife. Besides habitat destruction and climate chaos, insects are challenged by additional stressors, including insecticides, herbicides, introduced species, and light pollution. To make things worse, stressors often happen simultaneously. A 2019 global review revealed that 40% of insect species could become extinct in the next few decades, with a staggering 2.5% decline in insect biomass per year, and warned of a catastrophic impact on the earth’s ecosystems. In 2020, researchers found that Earth lost more than 25 percent of land-dwelling insects in the past 30 years

Growing natives is an act of compassion for wildlife at our mercy. It helps to think of animals as individuals with emotions and personalities, not just species. Like us, they want to avoid suffering and live a decent life, and most need native plants in order to do so. Animals such as birds and frogs that eat insects directly are of course negatively affected, but other species are as well. Bobcats, for example, are obligate carnivores, but they need native plants since they typically eat animals that consume insects or plant matter. 

Buy plants propagated from source material that originated as close as possible to your site. Using such “local genotypes”  helps ensure that you get plants that are well adapted to your area and preserves the genetic diversity that helps plants (and animals) adapt to changing conditions. Ask growers and nurseries about their sources if you’re unsure.

2. Minimize lawn and be bold when it comes to sizing garden beds. The more space we allocate for native plants, the better. Lawn is an unnatural monoculture that provides almost no support for wildlife, so if it’s not needed, let it go. You can remove it with a sod cutter or spade, but to preserve precious topsoil, cut it short, then cover it with a half dozen layers of overlapping newspaper or a layer of cardboard with holes punched in to ensure drainage. Cover with leaf compost and allow it to break down over many months.

To get ideas for plant selection and how to arrange and space those plants, look to nearby natural areas that support local native plants, inquire with your local native plant society chapter, and check out my book (if you live west of the Cascades). Plant long-lived trees and shrubs for carbon sequestration and habitat, as well as privacy so that unnecessary fencing may be removed, allowing for a contribution to wildlife corridors that connect. Add associated understory plants, including ground covers that offer the best mulch

Speaking of space, growing perennials for pollinators’ sakes means providing at least several plants of the same species that are planted fairly close to each other so that pollinators can easily find them and so there’s enough of a particular flower’s nectar/pollen to go around. But spacing them evenly, in perfect clumps, isn’t necessary and often looks contrived, and lining them up like veggies in a kitchen garden is even worse, aesthetically speaking. Take a walk in a natural area and you’ll find perennials and other plants with an array of spacing—some close together, some further apart; most mingle with other species that they evolved with. Irregular drifts may occur, as if nature took a paintbrush to create rhythmic splashes. Repetition of plant groupings will result in a natural look and more habitat. Be sure to provide at least a couple of species that flower in unbroken sequence from early spring until fall.


3. Avoid pesticides and use organic methods. It’s imperative to not use pesticides (insecticides, herbicides, fungicides, etc.) and chemical fertilizers to prevent harm to beneficial creatures above and below ground at home and prevent toxins from entering waterways and killing downstream. The Environmental Protection Agency has registered more than 18,000 pesticides for use, and more than 2 billion pounds of pesticides are sold every year in the U.S. Pesticides are pervasive in aquatic and terrestrial habitat throughout the country and threaten the survival and recovery of hundreds of federally listed species. They don’t stay put and can kill non-targeted species, decrease biodiversity within soil, are linked to a decline in nitrogen fixation, mess up the complex balance between predator and prey species in food webs, require fossil fuels, and involve heinously cruel experiments on animals. And, the U.N. tells us that about 200,000 people die each year from pesticide exposure. Chemical fertilizers are also very problematic since they kill soil microbes and pollute groundwater and waterways, leading to dead zones, among other damages.

4. Minimize water runoff and maximize carbon storage. There’s much we can do with the water that enters our landscape, and it doesn’t have to take much effort. It may help to think of our yards as mini-watersheds and ask what we can do to make sure the water that leaves our properties is clean and won’t harm other species.

Rain gardens can collect water — from downspouts or hard surfaces where water accumulates — and slow the flow of water, cleaning it as it slowly soaks into the ground and recharges aquifers. Other elements like bioswales, permeable paving, coniferous trees, and even rain barrels can manage water responsibly in our landscapes, reducing runoff that overwhelms storm drains and pollutes waterways. But it’s the plants themselves (along with soil) that effectively filter water and store carbon. Fully and diversely planted gardens — that include long-lived large trees, shrubs and lower plants — are best at cleaning water, preventing runoff, and sequestering carbon; more so than lawn or beds that are mostly wood chips. 

Halictus ligatus on Erigeron speciosus.

Although keeping your soil covered (with plants or mulch) is a good thing for carbon storage, moisture retention and erosion control, always leave some areas with bare soil (fallen leaves and small amounts of light compost are okay), particularly in areas that face south or east. Here’s why:  70% of native bees (such as this “sweat bee,” Halictus ligatus, shown) nest in the ground (the rest raise their young aboveground in cavities, stems, tunnels or crevices). Using thick layers of wood chips, bark dust, or other such substances prevents them from being able to create their nests and if applied after nests are complete, entombs and kills the developing bees.

Also, if you grow veggies, keep tillage to a minimum, if at all. Tilling soil speeds up the decomposition of organic matter, causes erosion, releases carbon dioxide into the air, exposes weed seeds to light, destroys mycorrhizae hyphae, and generally makes soil less fertile. Unnecessary fertilizer will also release more carbon. 

Erosion concerns? Choose native plants with dense, fibrous root systems to control erosion on slopes. In the Pacific Northwest, depending on your location and conditions, consider Douglas-fir, big-leaf maple, vine maple, Oregon white (Garry) oak, madrone, serviceberry, salal,  kinnikinnick, red-twig dogwood, oceanspray, tall Oregon grape and Cascade Oregon grape, western mock orange, red-flowering currant, snowberry, western sword fern, inside-out flower, and many others.

Bushtit nests require moss, spider silk, and other natural substances.

5. Add natural elements and be lazy. Wild species need secure, dry places to spend the winter, pupate, or seek cover during bad weather, and places to raise their young:  (1) Leave the leaves on soil. (2) Include rotting logs and other dead wood in shady spots to supply the perfect home for certain invertebrates and fungi. (3) Introduce brush piles to provide shelter and maybe even nest sites for some birds. (4) If you’ve dug up rocks from your soil, create smooth rock piles or stone walls without mortar to provide cover for wildlife like amphibians and reptiles, as well as arthropods. Making all these elements as large as possible and placing them in quiet areas works best. (5) If you must “clean up,” don’t do it in fall or winter. Instead, wait until late spring and do as little as possible so that those taking cover won’t be disturbed and so that birds can find building materials for their nests, such as moss, lichen, twigs, spider silk, and dried leaves (see bushtit nest, pictured above). If all this sounds messy, it is, but it’s also easy and exactly that characteristic that supports the greatest garden biodiversity! 

Last but not least, give wildlife a drink. All animals — from birds and dragonflies to frogs and salamanders — need water, so include a gently sloping bird bath or more elaborate water feature like a pond, and perhaps a plate full of watery gravel to help creatures thrive. Although the latter is most important during dry weather, birds need water year round to keep their feathers clean and waterproof. Since many urban streams have been buried, wetlands drained, and drought is upon us, it’s the least we can do.

Golden-crowned kinglet and Townsend' warbler.

© 2021 Eileen M. Stark

Green Corridors Begin at Home

“Is the deer crossing the road, or is the road crossing the forest?” 

To survive, most wild fauna must be on the move—to find food, water, safe shelter and breeding sites, mates, and, for some species, to migrate. But wildlife habitat is increasingly destroyed, degraded, or fragmented into small, isolated patches—by human-made barriers such as buildings, fences, lawns, and roads—which intensify their struggle to survive.

Habitat loss is one of the main threats to wildlife. More people and development mean less natural habitat, while inaction on the climate crisis forces animals to relocate. Today, more than ever, habitat connectivity needs to be restored and wild ones’ daily and seasonal movements or migrations protected.

Habitat connectivity is defined as the degree to which the landscape helps or hinders animals’ movements, as well as other ecological processes, such as seed dispersal. Whether they’re called conservation corridors, green corridors, habitat corridors, or wildlife pathways, their purpose is identical: To provide native habitat as seamlessly as possible, so that wildlife populations may be connected instead of separated. Even in deteriorated landscapes, such corridors boost biodiversity, allow genetic exchange between populations, and may even help ease the reestablishment of populations that have been decimated, isolated, or previously extirpated.

Recognizing that every front, back and side yard—even those within urban areas—is part of an intricate ecosystem that could support a great number of species is the first step toward encouraging rich, natural diversity. When “real” or “naturescaped” yards link directly to others like them, they help mitigate some of the effects of fragmentation, a huge threat to biodiversity. In general, urban and suburban areas are highly fragmented. Wildlife corridors are essential, especially for animals with large ranges.

You might be wondering, “Aren’t large-scale habitat connectivity projects happening?” or “Isn’t my yard too small to help much?” Yes, and no: The big projects are vital and projects such as underpasses and overpasses that help wildlife cross busy roads (that kill or injure many millions of animals each year) are multiplying, thanks to recent legislation in some states, as well as the federal Wildlife Crossings Pilot Program that provides funding. But also crucial are all the little spaces that—even if they’re not in the path of pronghorn or monarch butterflies—when added up, create interconnected networks. As I wrote in my book, “To be most beneficial, gardens need to connect—to each other and to the larger world—to provide continuous passage for wildlife and allow each garden to work and blend harmoniously with others nearby. A single naturalistic garden has benefits, but when in proximity to others like it, its worth multiplies.” Studies show that “the role of corridors is crucial for enhancing biodiversity in green spaces such as domestic gardens … results clarify the effectiveness of corridors in urban landscapes and have direct implications for the ecological management of cities.”

What to do? Whether you’re an avid gardener or someone who cares about dwindling wildlife, you can take positive action to help your property, balcony, or communal green spaces act as safe stepping stones within a green corridor that supports wildlife. It’s something that we can do despite (or perhaps because of) the heinous weakening of environmental protections by certain politicians over the past few years. And, it’s effective, rewarding, and usually fairly easy if you plan ahead.

Some basic tips:
Grow a diversity of locally native plants, and be sure to remove exotic invasive plants as much as possible beforehand (incrementally if they are used by wildlife). Your yard doesn’t have to be exclusively native, but when planted appropriately, the trees and shrubs that evolved in your area are especially important for supplying food, shelter, and possibly nesting sites.

Don’t fence them out (or in). When we moved into our house, one of the first things we did outdoors was remove two gates to our backyard. They served no purpose and I wanted to make it easy for four-legged fauna to come and go. While there are situations where fencing is helpful (for a dog run, to protect a veggie garden, or to prevent a little one from wandering off), many urban and suburban back yards are separated by tall, unattractive fencing that does nothing useful except provide some privacy.

Instead of impassible fencing (that also greatly diminishes air circulation around plants and, in the case of wooden fencing, wastes trees), think living, breathing native shrubs—either in an unpruned hedgerow or more naturalistic plantings—to provide privacy. Besides being much more aesthetically pleasing, shrubs alone provide food and shelter for wildlife, shade and carbon sequestration, and contribute greatly to green corridors. Unlike fencing, shrubs provide privacy but allow small animals to pass under, through, or along, from garden to garden. If your yard is tiny and you must add a narrow barrier, consider wooden lattice fencing with large openings, upon which (noninvasive) vines could grow (but don’t do this if you live where megafauna could get caught in it).

Some types of fencing can brutally kill or ensnare wildlife (and even people), often at nighttime. Avoid metal rail fencing, any spiked fencing, and all plastic netting. When not in use, take down volleyball and soccer netting.

Rethink manicured yards. Highly pruned, overly tidy, leafless, lawn-centric yards sustain very little life and are high-maintenance. Instead, create a chemical-free native wildlife garden that is more relaxed (some might say “messy”) and has the ability to support much more life. If you’re worried about what the neighbors will say, add some signs of human intention in the front: (a) Create interesting structure by varying the heights of plants so there is a connection from tall trees to ground cover—this not only looks nice, it’s great for wildlife; (b) Choose shrubs that can grow to their full potential without crowding each other out, hiding your doors or windows, or encroaching into pathways—all of which will eventually require harsh pruning; (c) Instead of one plant here, one plant there, plan for a rhythm by growing perennials in drifts or uneven clusters, and then repeat them elsewhere in your yard (this is also highly beneficial to wildlife like pollinators who need multiple plants to feed on); (d) Consider adding step stone paths, bird baths, strategically placed half-buried rocks, sculpture, or nest boxes (if appropriate), but don’t overdo it—few “focal points” are better than many. Don’t add landscape lighting, which is deleterious to living things.

Avoid “ecological traps” and minimize danger. When we grow native plants, minimize lighting, leave the leaves, add a water source and other positive elements to our yards, one of the wonderful outcomes is the increase in wild visitors. But no matter how well-meaning our actions are, “ecological traps” may be created when we make our yards welcoming to wildlife but don’t address the human-induced hazards that lurk nearby. When we design for biodiversity we must consider not just adding habitat, but also what we might inadvertently set them up for, such as being preyed upon by cats or dogs, or injured or killed by windows or some other hazard in our yard. Of course we don’t want to eliminate windows or companion animals, so we have to embrace adaptations that allow us to keep them and protect wild ones at the same time.

In other posts I’ve addressed the disastrous effect that reflective windows have on birds as well as the consequences of light pollution. Another lethal issue is free-roaming cats. Certainly not all cats are avid hunters, but many are, and it’s up to us to take responsibility for their actions. If you already have a kitty who’s been spending a lot of time outdoors, it’s going to be difficult—or even cruel—to suddenly lock him up and throw away the key. Cats are obligate carnivores, so it’s not their fault that they hunt, or want to. For those with unbreakable habits, consider limiting outdoor adventures during baby bird season (late spring to mid-summer) and at those times of the day when birds are actively feeding (typically early morning and late afternoon), and use hanging birdbaths instead of grounded ones. The next time you adopt a new cat, keep them safely indoors but offer a place to get fresh air, like a catio. Dogs, of course, may also be problematic, especially in areas where sensitive wildlife live or nest on the ground, such as fragile amphibians and reptiles.

Minimize hardscape. Unnatural hardscape does nothing for wildlife. Every time we remove hardscape and replace it with, say, regional native plants, dead wood, a water source and other beneficial elements, we help wildlife thrive. Minimizing it in your yard also helps reduce stormwater pollution, improve water quality, and mitigate the impacts of climate chaos.

Urge urban planners and park space advocates to plant native species. Despite native plants’ benefit to ecosystems and humans, they aren’t often added. A typical city park, for example, contains large expanses of lawn and some isolated trees (often non-native). Ecosystems are much more complex and may include tall trees, smaller trees, large and small shrubs, perennials and grasses, dead wood and fallen leaves, which support a large number of species. Creating native beds surrounding single trees, or at least within designated areas, will add complex layers without eliminating picnic space.

Finally, talk with your neighbors. Imagine if everyone’s yard was connected—botanically speaking—to the one next door, preferably without fences and gates. Then imagine that these connections continue from neighborhood to neighborhood and go on for miles, finally reaching a large natural area that’s even more supportive. Some neighbors may find your ideology beyond their grasp, but others may surprise you. Some people simply may not know about the deadly hazards of development and exotic plants, and speaking with them—or at least setting an example—may help to open their eyes and hearts.

 

© 2020 Eileen M. Stark

More Than Flowers: How to Support Pollinators in All Their Life Stages

Many pollinators are in steep decline and in dire need of protection. A black-tailed bumble bee (Bombus melanopygus) feasts on hairy honeysuckle blossom (Lonicera hispidula).
Black-tailed bumble bee (Bombus melanopygus) forages on hairy honeysuckle (Lonicera hispidula).

On the heels of National Pollinator Week — when we honor the hard-working animals who give so much, let’s remember that they need much more than flowers to survive. These fascinating creatures — from bees and beetles to butterflies and moths — face seemingly insurmountable threats, including habitat loss, the climate crisis, and pesticide use. It’s tragic and overwhelming, but there is much that each of us can do as individuals, and together we can have a tremendous influence over potential habitat in everything from tiny urban lots to community gardens to large rural expanses.

Modern landscaping practices essentially strip habitat from our yards. But there are many easy DIY habitat features that can be incorporated — or simply left in place — and they are superior to artificial supports (such as bee hotels) because they break down fairly quickly (which minimizes parasite and disease problems that come with repeated use), and better imitate the natural density of nest sites that keep pollinators healthy. 

In my Pacific Northwest yard I offer a variety of native trees, shrubs and perennials throughout, as well as a mini-meadow where locally native perennials — such as western columbine, fleabane, checker mallow, blue-eyed grass and iris — grow and buzz with life. To be certain they will return next year, I also provide adequate shelter for overwintering and nesting. I leave leaf “litter”, hollow and pithy stems, and dead wood lying around, provide water and brush and rock piles, use no chemicals, and refrain from doing any “clean up” until late spring, to prevent disturbance of overwintering adults, eggs, larvae, or pupa that may be camouflaged within nature’s debris—for example, the strikingly beautiful western tiger swallowtail butterfly may overwinter as chrysalis (pupa), which looks like a little piece of dead wood during that time. 

At home, here are a dozen easy things we can do to support a variety of pollinators, from bees, moths, and butterflies to beetles and flies

~ Leave parts of your garden a little “wild.” Undisturbed shelter and nesting locations are absolutely essential, and gardens that are a bit messy and provide brush and log piles, mounds of rounded stones, as well as patches of bare, well-drained, undisturbed soil will help.

Put away that leaf blower and allow fallen leaves, twigs and bark to remain undisturbed on the ground so that butterflies and moths can make it through the winter either as eggs, caterpillars, chrysalises, or adults, and so that bees such as queen bumble bees can slumber peacefully under a leafy blanket; leave a very light layer on any lawn you have, too. Besides pollinators, many other wild ones live or overwinter in leaves, including beetles, spiders, snails, and worms, all of which are beneficial and/or support the birds, small mammals, reptiles and amphibians who need them for food. An added benefit is that detritus from trees and shrubs insulate plants’ roots, suppress weeds and retain moisture just as well as wood chips or other mulches (that may contain invasive species) but allow for ground-nesting.

For the numerous species of native ground-nesting bees (70% of bees nest in the ground in burrows), supply a generous amount of undisturbed and bare soil. Avoid tillage and anything that prevents access to soil, like plastic mulch, landscape fabric, or thick layers of mulch, including wood chips and bark mulch. Natural fallen (whole) leaves, small pebbles, and light layers of compost are fine. If you must remove some leaves in the spring, wait until late spring to prevent disturbance to species who emerge fairly late.

Nest sites for the other bees that nest aboveground — in stems or tunnels within decaying wood — can be augmented by placing hollow or pithy stems, or downed wood (with or without dead-ended, narrow holes drilled into them) on or above the ground. Bumble bees typically nest in pre-existing cavities such as bird nest boxes, abandoned rodent burrows, unmortared rock wall crannies, hollow logs, beneath bunch grasses, etc. We once had a bumble nest in a small pile of lawn that had been removed and was decomposing upside-down.

In perennial beds, leave flower stalks, branches (and seed heads, to provide food) standing over the winter. In early spring, dead flower stalks may be cut back to create cavity nest sites just before the first bees emerge; naturally-occurring open stems should be left in place. Cut hollow or pithy stalks at a variety of heights, about one to two feet above the ground to supply vertical nesting opportunities for insects of various sizes. You can also bundle together additional cut stalks and place them, vertically or horizontally, in a sheltered spot to create additional nesting opportunities. Female bees will find them and create individual nests, each supplied with pollen/nectar balls upon which larvae will feed. As summer progresses, new growth hides the stems which contain the developing larvae/pupa. Adults hibernate during winter and emerge the following spring and the process starts all over.

Deer browsing may create nesting sites for some cavity nesters and shrubs may be pruned (just before the shrubs break dormancy) to mimic it. However, before cutting any branches, always be certain that no birds are using the shrub for nesting.

~ Provide clean water.
Pollinators and other insects need a shallow source of clean water where they can drink and find water to create their nests. Fill a plate or shallow dish with clean pea gravel and keep it moist and near flowering plants.


~ Moisten sand or loose soil to help adult butterflies. Butterflies and moths ingest liquids like flower nectar from which they obtain sugars, minerals, and other nutrients. But they also need to “sip” from muddy or sandy puddles, sap, decaying fruit, sweaty humans, even manure piles to hydrate themselves and obtain dissolved minerals, including salt. Such minerals are vital for many physiological functions, including reproduction: Males often transfer “nuptial gifts” of sodium and amino acids to the female during mating (along with other donations). Before you say, “He shouldn’t have,” consider how evolution toward generosity might generate rewards: More gifts mean more nutrition and better egg survival. To assist, add a dash of salt to containers or areas of moist sand or soil, to be sure they get what they need.

Butterflies and moths often obtain nutrients and moisture in mud puddles, but they’re also attracted to perspiration on skin, like this green comma butterfly.
Butterflies and moths often obtain nutrients and moisture in mud puddles, but they’re also attracted to perspiration on skin, like this green comma butterfly.


~ Steer clear of pesticides. Even those approved for organic gardening, such as rotenone, are harmful. Systemic insecticides like neonicotinoids (a class of insecticides such as imidacloprid, acetamiprid, clothianidin, dinotefuran, nithiazine, thiacloprid and thiamethoxam that affect insects’ central nervous systems), are absorbed by plants and produce toxic nectar and pollen. Studies show that residues may persist in woody plants for up to six years following application and may persist in soil for several years. Herbicides and fungicides can also be harmful. In a healthy, balanced system there should be no need to resort to poisons.

~ Allow some “pests.”
Some pollinators’ young feed on insects that we consider pests, so don’t be too quick to destroy them. Many syrphid flies, which are great pollinators, lay their eggs in or close to aphid colonies, so that their legless and blind larvae can feed on them. Highly efficient, one larva may eat hundreds of aphids. They also may feed on scale insects or thrips. When mature, larvae go to the soil to transform into pupae and eventually into adult flies. Their life cycle takes 2 to 4 weeks to complete. Other syrphid fly larvae are either (1) scavengers that tidy up ant, bee, and wasp nests, (2) feeders of plant material, tree sap, and fungi, or (3) decomposers that feed on decaying organic matter, so yet another reason to not disturb soil too much and to leave plant debris where it falls to the soil.

Syrphid fly laying eggs on an aphid-infested kale plant.

~ Grow a variety of plants that are native to your area, and you won’t need to think too much about whether you will provide food for pollinators. Studies show that native plants are four times more alluring to pollinators than exotic flowers.

Small female mining bee (Andrea sp.) gathers pollen for her young on showy fleabane (Erigeron specious).
Small female mining bee (Andrena sp.) gathers pollen for her young on showy fleabane (Erigeron speciosus).

Got lawn? Whether you have a large or small lot, consider replacing or minimizing turf with native grasses wildflowers, and perennials (and mosses in shady areas). Add native shrubs and trees to provide cover and protection, especially for ground-nesting bees, as well as the fallen debris and brush/log/rock piles mentioned above.

~ Grow butterfly host plants.
To become adults, butterflies in earlier life stages — egg, larva, chrysalis — require host plants that provide habitat and food. Find out which butterflies frequent your area, and grow the plants that provide for all their stages. In the Northwest, check out this handy guide: Create a Butterfly Garden (OSU).

~ Provide nectar and pollen in a variety of flower colors, shapes, and sizes for pollinators with different needs. Flower nectar, produced in glandular organs called nectaries, is high in carbohydrates and serves to attract pollinators to distribute plants’ pollen (and in some cases, attracts protectors like parasitoids and ants—which also pollinate to a small extent—against herbivores that may be problematic). Pollen is a highly nutritious blend of proteins, lipids and carbohydrates. We’ve been taught that bees tend to prefer yellow, purple, and blue flowers — anything but red, which they can’t see — while hummingbirds can see and do use reds (although one study suggests that their preference may not be innate, but rather they choose them since bees don’t). While this is true, a 2016 research study shows that bumblebees (and probably other pollinators) choose a plant for the nutritional quality of its pollen, not only its color; they need pollen with a high protein to lipid ratio (which makes sense, since pollen is mainly used to feed their growing larvae). And, research from UC-Davis suggests that pollinators choose among flowers based on the microbes within those flowers, such as yeasts that are “commonly found in flower nectar and … [are] thought to hitch a ride on pollinators to travel from one flower to the next. Yeasts’ scent production may help attract pollinators, which then help the yeast disperse among flowers.” But flower shape and size also matter: Butterflies need clusters of short, tubular flowers with a wide landing pad, such as yarrow (Achellia millefolium occidentalis), various native bees need different types of flowers (generally shallow), while hummingbirds like relatively large, tubular, or urn-shaped flowers.

Syrphid fly (Scavea pyrastri) on western bleeding heart (Dicentra formosa).
A syrphid fly (Scavea pyrastri) on western bleeding heart (Dicentra formosa).


~ Keep it blooming.
From spring through fall, something should always be in bloom, preferably several species at a time. In the Pacific Northwest, early spring flowers, like those of osoberry (Oemleria cerasiformis), willows (Salix spp.), and red-flowering currant (Ribes sanguineum), are particularly important to bees emerging from hibernation, while late-season nectar sources such as asters (Symphyotrichum spp. or Aster spp.) help bees that overwinter as adults get through the winter. Both early and late forage may aid in bees’ reproduction. Of course, mid-summer flowers are important, too! Many native species bloom for extended periods, such as charming foamflower (Tiarella trifoliata), which may produce flowers from spring to late summer, white spiraea (Spiraea lucida), and showy fleabane (Erigeron speciosus). Learn when plants bloom to be sure you’ve got it covered, and aim for some overlap in bloom times. Remember that trees and shrubs, as well as perennials and annuals, can provide nectar and pollen. Arrange smaller plants in irregular clumps or drifts so that plants are next to or within a few feet of another of its kind, to supply enough forage and to make it easy for pollinators to find them. Provide at least three different plant species per season of bloom whenever possible.

~ Forgo hybridized and “double” flowers. When choosing nonnative plants, keep in mind that hybridized varieties may lack sufficient pollen nutrition. Pollens vary in protein content, and bees and other pollen-consuming insects need a wide variety to fulfill their protein requirement. Research also suggests that some commonly used garden plants, especially those hybridized for features valued by gardeners, like disease-resistance or flower size or color, may not provide sufficient or appropriate nutrients in nectar, needed for carbohydrates. Frilly double-flowered varieties (those with extra petals that make a flower look inflated and flouncy) are usually inaccessible to pollinators simply because they can’t get through the mass of petals to the nectaries. It’s a bit sad to watch a bumblebee, desperately trying to get inside an overly dressed flower, fly away without food.

~ Turn roadsides native. Studies show that native pollinators are much more prevalent in native stretches of roadside habitat — often the only connection between patches of remnant habitat — than weedy, nonnative stretches. If you own rural land, plant natives near your roadside and mow it very infrequently (from the inside, out) to prolong bloom and prevent harm to creatures who may be taking cover within it.

Other things we can do for pollinators include participating in “citizen science” projects that seek input from gardeners, and advocating for an end to pesticide use in our parks and communities.

Trichodes ornatus
This beetle (Trichomes ornatus), on wild buckwheat (Eriogonum sp.), is a member of a very diverse group of pollinators that are especially important in areas where bees aren’t common.



© 2017 Eileen M. Stark  |  updated 2020

Adapted from content originally published in my book, Real Gardens Grow Natives: Design, Plant, & Enjoy a Healthy Northwest Garden.

 

Welcome Little-Known Moths to Your Garden

Smerinthus jamaicensis


The little sphinx moth caterpillar
 was on a mission: To find a safe, secure spot where she could transform herself and stay alive during the cold, wet winter months ahead. On a warm September day last year I watched as she inched her way across half the length of my back yard, occasionally meandering around roadblocks like plant stems and small rocks that must have seemed like insurmountable boulders to her (although at one point she nimbly climbed up and over a small log in her path). A couple of times she burrowed down into loose leaf cover, but then moved on, perhaps surmising that a better place would come along. After I walked away for a few moments I lost track of her. Since my yard is a leafy nirvana for butterflies and moths such as her species (Smerinthus jamaicensis or twin-spotted sphinx) that need to nestle themselves in soil under fallen leaves so they can pupate over the winter months, she probably found a suitable place that would hold her until a warm spring day allowed her to emerge and take to her wings.  

We’re nearing the end of National Moth Week, a short stretch of time set aside to appreciate these gentle, humble, and nimble flyers who tirelessly supplement the daytime work of bees, butterflies, and other pollinators, as well as offer food for other animals. They get a fraction of the attention that butterflies do and are often vilified, despite their close relationship, beauty, and rich diversity. Within their hidden world are unusual, intriguing, and dramatic behaviors. Moth species outnumber butterflies by around ten to one; there are more than 11,000 species in the U.S., with another 160,000 globally. 

Gardens are very important places for moths since development and agriculture severely limit their habitat. There might be dozens of moth species inhabiting an ordinary urban or suburban garden, and the way you manage yours can affect the conservation of their populations, which are, as you might expect, seriously in decline, like most insects. Here are some tips:

Protect them from light pollution. For nocturnal and crepuscular moths, as well as other insects and migratory birds who use celestial navigation, unnatural lighting can cause disorientation and confusion, leading to exhaustion and death. The best way to help restore their natural behavior is to turn off all exterior lights, using motion sensors when necessary. If you must have lights on, use only dim bulbs in warm tones, which are less likely to attract moths. Draw shades and draperies indoors as well, to prevent light trespass.

Ease up on “clean-ups”. Adult moths and their caterpillars, as well as some butterfly species including the mourning cloak, need fallen leaves, stems, twigs and other plant debris to help them hide from predators and to provide suitable places to pupate and spend the winter. Let fallen leaves stay on soil and delay cutting back spent plants until well into spring (the later the better), rather than doing it in autumn or winter (and always check branches that may hold a chrysalis). If you must neaten up a portion of your garden in the spring/summer, leave collected plant material elsewhere in your yard.

Forget about herbicides and other pesticides, which can kill moths and other insects. This will also benefit your garden by increasing the number of predatory insects that help control the pesky ones. There needs to be a supply of prey in order to feed the predators—it’s a natural cycle that needs to be supported.

Limit hardscaping (concrete, gravel, decking) and increase the amount of area given to plants other than lawn, since moths and other wildlife can’t use hardscape for habitat.

Grow a wide variety of plants (preferably native species local to your area) to appeal to a diversity of moth species—everything from grasses and flowering perennials to shrubs and trees. Gardening for moths is similar to gardening for butterflies and other pollinators, although moths generally tend to feed on a greater variety of foods than butterflies. 

As adults, most moths need a sugar source and they may feed on plant nectar, rotting fruit, or tree sap. Moth-pollinated flowers tend to be fragrant and pale or white, such as western mock orange (Philadelphus lewisii), oceanspray (Holodiscus discolor), and snow brush (Ceanothus velutinus), which allow nocturnal moths to easily find nectar after dark, so think “moonlight garden”. Moths that pollinate by day typically feed at flowers that native butterflies do, since they usually have long tongues. Some moths, like the twin-spotted sphinx, have reduced mouthparts and digestive tracts so don’t eat at all in their adult stage; they exist briefly only to mate and lay eggs, which in turn may provide food for predators like birds.

Almost all moth species need a host plant on which to feed during their larval stage. Many moth caterpillars eat leaves like most butterflies do, but some species may eat seeds, woody stems, or roots. The most important native host plants for moths and butterflies in the Pacific Northwest — considering the abundance of species they host — include Oregon white oak (Quercus garryana), oceanspray (Holodiscus discolor), and species in the following genera: Acer (maple), Alnus (alder), Arctostaphylos (manzanitas and bearberries), Ceanothus (wild lilac), Populus (aspen and cottonwood), Ribes (currants and gooseberries), and Salix (willows). 


© 2019 Eileen M. Stark

To leave a comment, click on post’s title

Summer Berries for Pacific Northwest Birds (and You!)

Amelanchier alnifolia (fruit)

The delicious fruit of Western serviceberry (Amelanchier alnifolia).

 

If you love berries (who doesn’t?) and wildlife, you can’t go wrong with the addition of native berry-producing plants to your yard. Local native plants are crucial for native wildlife because they (unlike non-native plants) are the chief producers of insects and other arthropods that are essential to wild species’ survival, but some plants also provide highly nutritious, often tasty fruit that just happens to show up when nesting season slows down and when we develop a craving for fresh, seasonal delicacies.

When we usually think of fruit, we visualize those fleshy, sweet treats like apples and peaches. But botanically speaking, “fruit” refers to the seed-bearing structure of angiosperms, or flowering plants. Angiosperms’ fruit results from pollination of the flowers, and enables dispersal of each plant’s seeds. Their fruit may be dry, such as the seeds of grasses or milkweed, or they may be fleshy, as in the case of huckleberries, false solomon’s seal and fairy bells.

Most native fruiting plants that appeal to us don’t ripen until late in summer, but here are a few that produce mainly during the early to mid-summer months and naturally occur widely In the Pacific Northwest, west of the Cascades. (Those that produce fruit for late summer and winter will be covered in another post.) I’ve chosen the tastiest ones and you will have to beat the birds to them if you want a sample (but do try to share!). 

Western (or Pacific or Saskatoon) serviceberry (Amelanchier alnifolia) has about as many common names as it does attributes. Also called shadbush or juneberry in some parts of its large range, this attractive, deciduous large Amelanchier alnifoliashrub or multi-stemmed small tree produces fragrant, five-petaled white flowers in early to late spring that supply food for native bees, hummingbirds and butterflies. Beautiful bluish-green leaves—that provide food for many types of butterfly larvae—turn gold to reddish-brown in autumn. Delicious “berries” (botanically speaking, a pome, pictured above) attract all sorts of birds—robins, chickadees, tanagers, waxwings—as well as mammals such as raccoons, foxes, and bears. The fruit—high in vitamin C, manganese, magnesium and iron—is at its sweetest ripeness when it turns deep purple to almost black; this is usually in early summer (hence the name Juneberry), but it may occur later depending on the location. 

Typically found growing in dry woodlands or on open hillsides in well-drained soil at low to mid-elevations, serviceberry plants are quite drought tolerant once established. They do best without a lot of root competition, so space them apart from other plants if possible. If you’re growing more than one, space them at least 6 to 8 feet apart. They’re a great addition to large, unpruned hedgerows, hillsides, or anywhere you want a screen or windbreak. Offer full to mostly sun in cool areas, part shade in hotter spots, and well-drained soil. Consider growing serviceberry with associate plants like Oregon white oak, Douglas-fir, Oregon grape, white spiraea, and others. 

Several so-called brambles, members of the large Rubus family, offer tasty “berries,” which are are actually aggregate fruit, in this case made up of many individual fruits called drupelets which developed from multiple ovaries in a single flower. Besides offering fruit that appeals to two-legged creatures, these Rubus species are choice wildlife plants that provide for pollinators, fruit-eating birds and mammals, and browse species who consume twigs, stems, bark or leaves; their thickets also provide important cover for small animals.  

Blackcap raspberry (Rubus leucodermis var. leaucodermis) isn’t your typical, cultivated raspberry, but its habit is similar: Deciduous and prickly, this vine-shrub arches up to six or seven feet tall. The stems are biennial, with fruit forming their second year. Stems that have fruited may be cut out at the base (be sure to wear gloves and long sleeves when pruning or picking fruit!). 

Rubus leucodermisMid to late spring flower clusters offer nectar and pollen for native bees; the soft fruits ripen in summer when they reach a deep purple (mid-June into July in my low elevation yard). Like all wild fruits, they are very high in nutrients such as vitamin C and antioxidants (this has been confirmed by an informal survey of American robins who greatly preferred the wild to the cultivated). But not only robins: grosbeaks, jays, thrushes, sparrows, towhees and many other birds love them, as do mammals like raccoons, opossums, foxes, and squirrels. And for small animals seeking protection from predators, a thicket of prickly stems can come in very handy. 

R. leucodermis

Native bumble bee foraging at a blackcap raspberry flower.

Found naturally in open forests and moist rocky areas, it seems to thrive in both sunny and shady sites. Though not fussy about soil type, it will fruit best when kept moist. Due to its potential to travel, I have mine in a huge pot so it doesn’t take over my minuscule yard. But if you have some space and don’t mind its spread and hooked prickles, by all means find a spot. It’s an attractive plant that bears tasty fruit, but it’s best when allowed to naturalize in a wildlife garden where its function will be appreciated.  

 


Thimbleberry (Rubus parviflorus)
is another easy and fast growing bramble,Thimbleberry that comes without prickles. Its large, deciduous, soft and velvety leaves may be used by leafcutter bees for nest building.

Showy, five-petaled edible white flowers appear in late spring at the tips of young stems and provide for butterflies and bees; the tasty, bright red raspberrylike fruit ripens over the summer and appeals to many bird species, as well as small and large mammals.Rubus parviflorus (fruit)

 

 

Since thimbleberry naturally occurs in riparian areas and in open, moist to dry wooded areas, it is tolerant of moist or dry soil and full sun to partial shade. It will spread, so like cousin blackcap, it’s best in wilder gardens.

 

 

 

One other summer berried Rubus shrub is salmonberry (Rubus spectabilis), that stands out in early to mid-spring with bright pink to magenta flowers that attract migratory Rufous hummingbirds on their long journey northward, as well as other pollinators. Golden to reddish-orange raspberrylike fruit ripens in early to mid-summer and attracts the usual suspects. Its arching stems (sometimes prickly) rise up to 12 feet and spread by branched rhizomes into thickets. Typically found growing in riparian areas or the dappled shade in moist woods, it does best with moist soil but may spread more slowly without it. 

Last but not least, red huckleberry (Vaccinium parvifolium) is such a beautiful plant — and with delicious berries — that it deserves a post all its own.

 

© 2019 Eileen M. Stark

To leave a comment, click on post’s title 

 

A Little Bird Tells Us About the Necessity of Native Plants

Chickadee with larva
It’s often noted that native plants and animals depend on each other
because the two evolved specialized relationships together over thousands of years, but that’s a basic explanation that doesn’t offer any details. I’ve often wondered about individual animal species and to what extent native plants are essential to them. I watch ladybugs devouring aphids on native perennial, shrub and tree leaves, warblers foraging for insects in various shrubs and trees, and black-capped chickadees bringing squirmy larvae to their hungry nestlings. But how much do birds really benefit when we choose to grow natives?

To my delight, a new study that focuses on one insectivorous bird species—the Carolina chickadee (Poecile carolinensis)—was recently released in Biological Conservation. Chickadees—whether they’re Carolina, Black-capped, or Chestnut-backed—are fairly common backyard species that, like most birds, don’t reproduce on seeds and fruit but instead eat and feed insects to their young. The study’s authors evaluated regional native plants, but also those that originated outside North America to see if they were a limiting factor for this particular species’ ability to effectively raise babies. Their results prove that non-native plants reduce the quality of habitat for Carolina chickadees by not providing enough food for their young.

Insects are crucial
It is the living environment—including insects—that sustains us and every other species. Herbivorous insects make up more than a third of the world’s animals, and their role is indispensable: By converting plant material to protein, they are nature’s only way of getting plants’ energy into animals who don’t eat plants directly, as well as into the animals who eat the ones who feed on insects.

Most herbivorous insect species are called specialists, meaning they can’t choose what they eat. Their menu is short: They must rely on only certain types of plants (that they evolved with) which have certain chemical compositions that support them, and can’t exist where those plants don’t exist. A well-known example is the monarch butterfly—an insect whose larvae can only feed on native milkweed plants—but there are countless others. If you already recognize the charms of regional native plants and have witnessed how growing them attracts more wildlife to your yard, all of this comes as no surprise. Native plants host and support more native herbivorous insects and, consequently, more birds and other wild ones.

Egg cluster for Baby

In addition to insect larvae, occasionally parents feed adult insects or clusters of insects eggs (shown here) that are most likely found in native plants.

The study
During the study’s two-year survey in the Washington, D.C. area, the research team correlated the birds’ diets to the plants they forage in. Using 97 suburban yards, they determined the species and origin of each tree and shrub, then checked the leaves of 16 plants at each site for caterpillars while tracking which plants received the most foraging visits from chickadees. Nest building in and near each yard was also examined through- out the chickadees’ breeding period, roughly April to early June on the east coast. Data revealed that these birds were more likely to nest in yards with native trees and shrubs than in yards with ornamentals that evolved outside North America. The native trees used the most included oaks, elms, cherries, and maples due to their ability to support the larvae of lepidoptera (butterflies and moths) and sawflies, which are essential for rearing young chickadees. Baby chickadees (and other birds) need a lot of food to survive: Previous research has shown that these busy parents need to collect 5,000 to 9,000 bits of food (depending on the clutch size of the brood) per nestful of chickadees, plus feed themselves!  According to the Cornell Lab of Ornithology, “during a lodgepole needle miner [an insect that can kill trees] outbreak in Arizona, one chickadee was found with 275 of the tiny caterpillars in its stomach at one time.”

The native connection
Chickadees are generalist foragers, meaning they’ll look for food nearly everywhere, not just on certain plants. They will forage in non-native plant species but won’t find much, since few host the food they need. In my experience, black-capped chickadees may also feed their babies some adult insects and the occasional spider (which may be found almost anywhere), but in native trees such as oaks, a high diversity of larvae can be found, and large numbers of them can often be found quickly. Douglas Tallamy’s research has found that a small percentage of plant genera support the majority of Lepidoptera. Other research found that woody plants apparently support many more Lepidoptera species than herbaceous plants do. Whether that is because “woody plants in general are both longer lived and larger than most herbaceous plants and thus may be easier targets for insect herbivores to exploit,” or because “herbaceous plants are underreported as lepidopteran hosts because they are more difficult to identify and less conveniently searched by collectors,” we ought to grow more woody plants to maximize biodiversity, if only to give the benefit of the doubt (and provide birds more cover and potential nest sites). And, as I reported two years ago, another study confirmed that relatives of native trees (i.e. scarlet oak,

Chickadee young are fed by their parents for several weeks post-fledging.

Young chickadees need to be fed by their parents for several weeks after fledging.

a distant cousin of the west coast’s Oregon white oak) host and support fewer species of insects than the native counterpart, and that non-native trees that have no native relative in a region provide next to nothing. Yard after yard of ornamental, introduced species effectively destroys insect diversity and harms native wildlife.

So, now we have more compelling evidence that growing natives can improve the human-dominated landscape by supplying numerous ecological advantages—including the ability to support the entire life cycle of insectivorous birds—and beauty. Whatever benefits the chickadees will also benefit other species, and increase biodiversity overall. The Douglas-firs in the back of my yard and the towering elms in the parking strip on my street nearly always have birds in them. Besides chickadees, I see woodpeckers, nuthatches, warblers, kinglets, bushtits, and more. The chickadees simply tell us what they all need.


© 2017 Eileen M. Stark

To leave a comment, click on post’s title

Remove Invasive Plants: It’s Good for Wildlife and Gardens

English ivy (Hedera helix)

A little neglect goes a long way (English ivy takes over).


I’m embarrassed to admit
that when I first moved to the Pacific Northwest in 1990, before I knew much about regional native plants, I thought that foxgloves were native plants. Why? Because I encountered them in natural areas. Luckily, I know much better now and—with the exception of some infrequently traveled trails in remote corners of the world—I cannot remember a hike where I haven’t encountered invasive plants (and sometimes a terribly large number of them). Areas close to urban areas are hardest hit, but even ecosystems far from the madding crowd can suffer from their effects.Digitalis purpurea

Invasive plants are nonnatives that were—and continue to be—brought here either intentionally by the nursery trade (or agriculture), or accidentally (as packing material and such). Thousands of species have been brought to North America, and many of ours have been sent abroad. All this rearranging of the earth’s flora started innocently enough centuries ago, but experts fear that it’s reached a point where biological diversity is severely threatened and essential interactions, like pollination, are damaged. Foxglove (Digitalis purpurea), as lovely as a biennial can be, may not be one of the worst offenders, but it doesn’t stay put with its countless tiny seeds, and shows up in places it doesn’t belong, basically making life miserable for the native plants that do. More problematic species often reproduce in several ways: For example, Himalayan blackberry and English ivy (shown in top photo) and its cultivars spread via rooting stems and by fruits eaten and dispersed by wildlife. Both suppress and exclude native vegetation and form dense monocultures that are unsuitable as wildlife habitat. English ivy is capable of one other feat, if left alone long enough: Killing entire trees.

Of course, not all nonnative plants pose horrendous problems, but those that do run amok are able to because whatever keeps them in balance in their native land—soils, predators, pathogens or weather conditions—are lacking here. Consequently, they do so well that they’re able to spread fairly easily from yards or agricultural areas into natural areas that support native species that can’t compete; the natives have no defense, become overwhelmed by the newcomers, and die out. This is particularly devastating for uncommon or endangered plants close to extinction. In addition, the spread of invasives (plant, animals, and pathogens) has economic ramifications.

Deadly for wildlife
While habitat loss due to deforestation, urban sprawl, livestock grazing, and agriculture is the greatest threat to the variety of life on Earth, invasive plants contribute greatly to the tragic loss of biodiversity. Since native plants are essential for native fauna (especially insect herbivores, most of which are specialists that can only use a certain plant or plants due to their chemical makeup), when natives are gone, so too are the herbivores and the higher life forms that feed on them. And, needless to say, fauna use native plants for other essentials, like nesting habitat and shelter.

Some nonnatives are also poisonous. It’s not unusual for cedar waxwings to be poisoned by the fruit of heavenly bamboo (Nandina domestica). And during a recent winter, many wild elk and pronghorn died horrible deaths in Idaho after foraging on Japanese yew (Taxus japonica), which is considered invasive in some states. Hungry bears also have been poisoned in Pennsylvania by English yew (Taxus baccata), and other animals—including livestock and people—can also be poisoned. Instead of nonnative yews, we can plant regional/local yews that wildlife coevolved with. The Pacific Northwest’s yew, Taxus brevifolia, which provides food and cover for many wild species, is the best choice from British Columbia to northern California and east to Montana, at mid to high elevations. Sadly, this attractive understory shrub that grows beneath conifers is in trouble due to over-harvesting for medicine, as well as the logging industry.

Hard work pays off
Research from the Seychelles, an archipelago in the Indian Ocean, shows that sweat and funds invested in eradication can pay off for all sorts of pollinators (bees, butterflies, beetles, birds, reptiles), for the native plants themselves, and for an entire ecosystem. Following the removal of nearly 40,000 invasive shrubs on four mountaintops on one island, researchers monitored the remaining native plants for visits from pollinators. Eight months of observation later, “Ecosystem restoration resulted in a marked increase in pollinator species, visits to flowers and interaction diversity.” Essentially, even during the rather short test period, it was found that both the number of pollinators and their interactions with plants and each other were over 20% higher in the test areas than in control plots (where the invasive shrubs had been left alone). And, the test area native plants also produced more flowers and fruit than those in control areas. Restoration works!


WHAT YOU CAN DO

Eradicate them. Early detection and removal  is crucial to stopping an invasive plant in its tracks, especially if you live near a natural area. To make it feasible, and if you have a variety of invasives, pace yourself—perhaps get rid of one species a week (or one a month or season, depending on the infestation). I strongly recommend forgoing pesticides (even so-called natural ones) and manually digging them out whenever possible. Digging when the soil isn’t saturated is best, to prevent destroying the soil structure that results when working wet soil. And if your arch-enemies grow on a steep slope, be sure to replace them with native erosion controllers (Oregon white oak, madrone, red alder, oceanspray, red-twig dogwood, Nootka rose, kinnikinick, salal, sword fern, etc.—whatever species are local and will do well in the light and soil conditions) as soon as you can; a biodegradable jute netting can be laid down to prevent erosion while new plants fill in.

At the very least, cut stems off at the soil level well before plants go to seed (it can happen quickly!). This method doesn’t disturb the soil (which can invite the germination of more weed seeds and steal moisture) but it can be tedious. Some species can be cut to the soil level and then be covered with a dark cloth like a dark thrift-store bedsheet to block out light (not plastic, which will prevent moisture from reaching the soil and kill soil life). Left for a year or so, it will prevent photosynthesis; afterwards, check to see if you need to dig out any live roots. Persistence usually pays off. In hard to reach places, such as beneath tree or shrub roots, repeatedly cut down or yank out leafy stems—eventually the plant will die from the lack of energy that sunlight provides. The morning glory vines that come from under a dense shrub in my yard get weaker every year because we continually pull out what we see. I seriously think this year may be their last.

One exception to the get-it-out-as-fast-as-you-can rule: If the invasive plants are providing some habitat for wildlife (nesting sites or food or cover), do a soft eviction and take them out gradually or incrementally, after nesting season, rather than all at once. This will avoid completely eliminating the habitat and causing undue stress to wildlife.

Please note: If you need to eradicate English ivy that’s climbing on a tree, cut the vines at the base of the tree but don’t pull it off the bark because bark can be damaged and possibly contribute to a tree’s death.

Herb robert (Geranium robertianum) an invasive plant

Stinky Bob: Pretty, but very assertive in natural areas & gardens.

Remember that some seeds can survive for many years. When I first started gardening in my yard, there were a lot of Robert’s geranium (Geranium robertianum) a.k.a. “Stinky Bob”. I made sure I pulled all the plants before seeds had set, but the next year they were back due to previous years’ seeds. I pulled them again and again, always before they flowered. Fifteen years later, I’m still pulling, but this year there were only two plants! Moral of the story: some seeds can stay viable a very long time, so don’t you dare let up on your weeding. But of course neglected neighboring yards can supply seeds as well, so it’s a continual process. Before planting natives, wait at least a year after the initial removal. Weed again, and then plant. It may not eliminate the seeds, but it should cut down on future seedlings and give the natives the best chance at taking control again. Growing assertive natives, those so-called “pioneer species”  or “early seral” plants generally will be better at competing with weedy non-natives.

Know what you’re planting. Don’t buy newly introduced plants that lack a track record, or seed mixes that may contain invasive seeds, especially ones labeled just “wildflowers.” If you want a wildflower meadow or prairie-style garden, buy only seeds that you know are native to your location and you won’t have to worry. Even though many native “pioneer species” (especially annuals) can be quite assertive, if they spread enthusiastically they won’t wreak havoc on the environment. Species from different regions of the country can be problematic, not just those from Europe or Asia, so go with only your local native plants whenever possible.

Speak up if you notice plants for sale that are problematic.  I’ve seen Arum italicum and Vinca minor and many others for sale at local retail nurseries, even though they’re on my city’s “Nuisance List” (and I’ve seen Stinky Bob, too!).  The thing is, just because plants are deemed invasive or a “nuisance” species, doesn’t mean they can’t be sold—the only plants that are illegal to sell in a particular state are those that have been officially listed as a state noxious weed. But if enough of us educate retailers, hopefully they will pull the plants from their catalog/store.

Besides eliminating invasives in our yards, we need to be very careful about what we’re dragging into natural areas on our hiking boots or sneakers. Plant material like seeds can get stuck in the tread of shoes, and some stick like velcro to laces, like the seeds of the aptly named forget-me-not. And backpacks and pant cuffs can harbor and release seeds, as well as dogs’ paws and fur. When I encountered Stinky Bob in a beautiful natural area last year in the Columbia Gorge; it had already spread over a slope as big as my back yard. No doubt someone unknowingly carried the seed there and the plant that resulted liked it there—a lot.

Tell others about the harm that invasives pose.

Join a local invasive plant eradication effort.

♦ If you see infestations in natural areas report them to the local soil and water conservation district or to an invasives hotline like Oregon’s www.oregoninvasiveshotline.org.

Better choices
Depending on your location and conditions, what are some possible native substitutes for the overzealous travelers, once they’re removed? In the Pacific Northwest, to replace English ivy (and cultivars), consider salal (Gaultheria shallon), kinnikinnick (Arctostaphylos uva-ursi), sword fern (Polystichum munitum), star-flowered false solomon’s seal (Maianthemum stellatum), inside-out flower (Vancouveria hexandra), or Cascade Oregon grape (Mahonia nervosa). Himalayan blackberry might be replaced with thimbleberry (Rubus parviflorus), salmonberry (Rubus spectabilis), or black-cap raspberry (Rubus leucodermis var. leucodermis). Arum could be succeeded by false solomon’s seal (Maiantheum racemosum) or vanilla leaf (Achyls triphylla). Vinca could be ousted by piggyback plant (Tolmiea menziesii), broadpetal strawberry (Frageria virginiana), or oxalis (Oxalis oregana or O. suksdorfii). And Stinky Bob might sublet his space to Western bleeding heart (Dicentra formosa), Oregon geranium (Geranium oreganum), or licorice fern (Polypodium glycyrrhiza). Always research plants’ needs and mature sizes before planting and choose those that would occur naturally in your area.

Herb robert

This huge clump of Geranium robertianum (Stinky Bob)—that’s pushed out native species—probably started with just one seed.

 

© 2017 Eileen M. Stark

To leave a comment, click on post’s title

After a Storm: Dead Wood Gives Life

snaggy-stump

Following a particularly nasty ice and wind storm that damaged or took the life of many mature trees in Northwest Oregon, it’s time to clean up nature’s ragged pruning job and literally pick up the pieces. Or is it?

Clean up sparingly
If there are damaged limbs on a street tree or yard tree close to your house, hire a certified arborist to remove any dangling branches and clean-cut any ragged wounds and stubs left by breakage, particularly if you have a tree that is prone to disease, such elm-damage-ice-stormas an elm. Sharp cuts that don’t leave stubs (partially amputated branches not cut back to the branch collar that look like you could hang a hat on it) will allow for faster healing and may prolong the life of the tree. But if safety is not an issue, consider that natural, important habitat is created when damaged limbs are simply left on the tree. As I wrote in my book, “interactions between wildlife and decaying wood are fundamental to ecosystem functions and processes in forests, aquatic habitats,” and your garden, whether they be wooded or more open.

We’re usually far too eager to remove anything and everything that’s fallen to the ground to keep our yards neat and orderly. Unfortunately, this sort of maintenance can be harmful not only to our backs, but also to dwindling
dead woodwild species that need natural, woody “litter” and some disarray, not homogenous expanses of bare soil, bark mulch, or clipped lawn. In fact, “cleaned up” landscapes are usually outright harmful to wild species, including pollinators and recently fledged birds who need low cover to stay safe. Like fallen leaves, “dead wood” or “downed wood” is so essential that many creatures (and plants) cannot survive without it. So, instead of hauling away branches, logs, bark debris, stumps, twigs and such, be compassionate and leave it (or move it to an appropriate, out-of-the-way part of your yard) so that it can decompose naturally and begin to provide food, shelter, nesting material, or places to raise young. Decomposing dead wood has many other unnoticeable yet complex eco-functions, like supporting fungi that live in symbiotic relationships with plant roots. Eventually, the stuff that may look messy to us turns into fertile soil which supports plants which support insects which support birds, and so on.

Snags are a good thing snag at Smith & Bybee lakes

What about dead or dying trees? Known as snags, with their hollow cavities, broken branches, and loose bark, they actually may provide more varied habitat for all sorts of creatures than living trees do! In addition to providing essential housing for many types of insects (including pollinators), cavity-nesting birds, amphibians, reptiles, and small mammals (including bats), they provide food, open perches and double as storage lockers. Woodpeckers also use them to communicate during breeding season.

Snags are in very short supply as forests are increasingly decimated, and they’re extremely rare in urban areas. Removing them not only steals crucial habitat; it’s expensive. Leave snags in low activity areas that won’t pose a problem if they fall apart; when they do fall they’ll continue to give back in the understory. If safety is a concern but you want to retain a dead tree’s benefits, consult with an arborist to shorten its trunk to snag with female flicker feeding youngroughly 15 feet tall and cut back branches. If that’s not possible and you must cut it down, leave the trunk on the ground where it won’t get in your way and leave the stump. If you already have a snag, retain or add native shrubs near its base. They will help keep it protected from weather extremes and provide connectivity, leafy cover, and additional forage for wildlife.

The Washington Department of Wildlife has more detailed info on these “wildlife trees” and the Cavity Conservation Initiative has an enchanting video that documents, up close, the lives that they support.

 

Designing with dead wood
Although some people view snags and other dead wood as unattractive, more and more of us see them as aesthetically pleasing natural sculptures, issued gratis to the landscape and priceless for wildlife. Keep them, work around them, and incorporatesnag "sculpture" them into your landscape, and the wild ones will thank you.

Consider grouping logs and branches in layered piles, with the largest at the base, in quiet places under trees where they can provide shelter from predators and roosting sites for little ones. Fallen trunks or massive logs can recline individually on the ground, where they might act as lovely focal points that will change over time, displaying dead wood (stump)the quiet beauty that unfolds during all stages of natural decomposition and regeneration. Imagine a “nurse log” in your own yard that will increase biodiversity by providing decades of nutrients and moisture to other plants and soil organisms. While natural, moss-furred nurse logs (fallen forest trunks and limbs) provide complex substrates for regeneration of trees in intact forests, there’s no reason you can’t foster similar function in your yard (but never remove nurse logs from a forest). Surround a fallen giant with native ferns and other shade lovers to blend and complement, and the mystery and magic begins. It rots slowly at first, then begins to crumble away, providing more sustenance for other species. After a few decades, the log will be reduced to nothing but fragments, but the soil—nurtured, enriched, and full of life—will pass on its riches.

A few plant species do best when growing on or next to downed wood. In the Pacific Northwest, Vaccinium parviflorum (red huckleberry), that deliciously berried shrub that hikers know and love, is almost always found growing on a stump, nurse log or other decomposing wood in forests. When I planted red huckleberry shrubs in my yard a few years ago, I buried some rotting wood in the planting hole and added dead branches and conifer cones on top of the soil. So far they seem to like it.

Nest boxes and more trees to the rescue
If you’re like most people and don’t have a snag or a mature tree with decay on your property, consider adding a species-appropriate nest box for cavity nesters like chickadees, chickadee nest boxnuthatches, woodpeckers, swallows, or owls that is sited correctly and is accessible for annual cleaning. Though not as good as natural nest sites due to their inability to insulate as real tree cavities do, boxes are better than nothing.

Lastly, if you’ve lost a tree or have the space for one more, consider planting a regional native replacement (or two or three) that will thrive in the site’s conditions. It’s crucial that we keep planting and protecting, so the cycle can continue.


© 2016 Eileen M. Stark

To leave a comment, click on post’s title

Pacific Northwest Native Plant Profile: Deer Fern (Blechnum spicant)

Blechnum spicant

Since winter is well on its way, this seems like a good time to give a nod to a distinctive evergreen fern that brings elegance and function to moist, west coast coniferous forests, as well as shady gardens. Deer fern, known botanically as Blechnum spicant, comes from a large, extended family known as Blechnaceae (the chain fern family). The genus Blechnum actually has fewer members north of the equator than south (most of which live in the steamy tropics), and a few of the Ecuadorian cousins have managed to graduate to tree fern status, topping out at an impressive 10 feet tall! But our sweet little deer fern pays no mind to their staid accomplishments and remains forever a trim forest gem with many friends and admirers.

The Latin Blechnum comes from the Greek Blechnon, an ancient name for ferns, while spicant means “spikelike.” Its spikes are fertile fronds (which can be seen in the top photo) that rise vertically above the more earthly sterile fronds that produce no spores. Leaves on both types of fronds have oppositely arranged, shiny leaflets; the fertile ones are much narrower and have two rows of sori on their undersides. Deer fern looks attractive year round and its leaves often develop a coppery-red color in early spring.

Blechnum spicant

How it grows
This long-lived fern naturally occurs in southern Alaska, coastal British Columbia, Washington and Oregon (west of the Cascades), northern Idaho where it is classified as imperiled, and coastal California, as far south as Santa Cruz county, as well as the Sierra Nevada. It also occurs in parts of Europe. In western Oregon and Washington it grows from sea level up to montane zones and dominates the understory of what little remains of moist, old-growth forests, as well as second-growth forests.

Wildlife value
As you might expect, deer fern satisfies the winter hunger of deer, but also elk, caribou, moose, mountain goats, and bighorn sheep, especially in winter. It also provides year-round cover for small birds and mammals, insects, and other little creatures. Some birds may use the leaves as nesting material.

Try it at home
Deer ferns spread by thick, short, creeping rhizomes, and the key word here is short—as in stubby—which means they don’t spread nearly as fast as I would like. They prefer the misty air created by mature forest giants, the soft, moist, crumbly soil that comes from centuries of fallen detritus, and the symbiotic support of a real forest, not the drastically altered state of rectangular urban patches with hard, compacted soil and blistering heat. But don’t let that discourage you if you have close to the conditions deer ferns need: Shaded, relatively moist, somewhat rich soil beneath the protective canopy of (preferably native) conifers. A little dappled sun is fine if you can provide some supplemental water (especially when they’re young), but don’t try to grow them in bright, fairly sunny places where sword ferns (Polystichum munitum) would do better. Allowing for a nice thick layer of compost or other organic matter (such as fallen leaves that break down by fungus and microscopic organisms) will help maintain moisture around their roots and add nutrients to the soil over time.

Although deer ferns are handsome close-up as focal plants, they are at their loveliest when grown en masse as a ground cover. Since they eventually grow to about two feet tall and wide, space them about two feet apart. Or, consider placing them a bit further apart and add the companionship of other native ground cover species that can nestle in between the ferns (but not crowd them out)—this looks the most natural and will help keep down weeds and protect the soil.

Deer fern is a good sub for nonnative invasive plants such as English ivy (Hedera helix) and bittersweet nightshade (Solanum dulcamara).

deer fern & friends

In my backyard, deer fern mingles with maidenhair fern, piggy-back plant, and red-twig dogwood, all under the watchful eye of a youthful western redcedar.

Grab a partner
Deer fern does best with many other species that grow together within native plant communities. It thrives with native conifers, and in the Pacific Northwest they may include western redcedar (Thuja plicata), western hemlock (Tsuga heterophylla), Douglas-fir (Pseudotsuga menziesii), grand fir (Abies grandis), noble fir (Abies procera), Sitka spruce (Picea sitchensis), and coastal redwood (Sequoia sempervirens), depending on the location. Deciduous trees like red alder (Alnus rubra) and vine maple (Acer circinatum) also make the cut. Understory species often found growing with deer fern include red huckleberry (Vaccinum parviflorum), thimbleberry (Rubus parviflorus), salal (Gaultheria shallon), devil’s club (Oplopanax horridus), queen-cup (Clintonia uniflora), false Solomon’s seal (Smilacina racemosa), Hooker’s fairy bells (Disporum hookeri), foamflower (Tiarella trifoliata), stream violet (Viola glabella), wild ginger (Asarum caudatum), piggy-back plant (Tolmiea menziesii), bunchberry (Cornus unalaschkensis), various mosses, and other ferns such as western sword fern (Polystichum munitum), ladyfern (Athyrium filix-femina), and oakfern (Gymnocarpium dryopteris).

© 2016 Eileen M. Stark

To leave a comment, click on post’s title

Pacific Northwest Native Plant Profile: Red-twig Dogwood (Cornus sericea)

Cornus sericea ssp. occidentalis

Red-twig dogwood is one of those multitalented shrubs that grows in a variety of moist habitats, provides significant wildlife habitat, and keeps us enthralled year round. Also known as red osier dogwood and creek dogwood (among other common names), it is a multi-stemmed, deciduous, long-lived and fairly fast-growing shrub that develops into an open, somewhat rounded thicket. Its common name comes from signature reddish stems which become brightest in winter. Botanically speaking, it’s known as Cornus sericea (syn. Cornus stolonifera). Sericea comes from the Latin “sericatus,” which means “silky” and describes the soft texture of the leaves and young twigs. Stolonifera refers to its lower stems or branches that tend to tiptoe horizontally and grow roots when they touch the soil.

Besides its vibrant red stems, this plant has oppositely-arranged, deep green leaves that turn an array of colors as the days shorten in autumn. On this sunless late November day in my back yard, the leaves range from a soft gold and pale orange to deep red, and they’re becoming more purplish-red each day. Come spring, four-petaled creamy white flowers will appear in clusters in May to July and will be tailed several months later by soft white to pale blue fruit (shown above) that may persist into winter if the birds don’t devour them.
Cornus sericea

How it grows
Red-twig dogwood has a large range—from Alaska and northern Canada from coast to coast, and as far south as Virginia in the east and Chihuahua, Mexico in the west, at low to middle elevations. There are two subspecies: C. sericea ssp. occidentalis, which occurs in the Pacific Northwest, Alaska, California and British Columbia, and C. sericea ssp. sericea, which is found much more widely. Differences are miminal, with the latter having slightly larger flower petals and fuzzier leaves and shoots. Both typically occur in moist, open sites such as meadows, bogs, floodplains, and near shorelines, but they also can be found under forest canopy as well as within more open woodlands in or near riparian areas.

Wildlife value
Red-twig dogwood is important for providing diverse structure, cover, nesting habitat, and a variety of edibles for insects, mammals, amphibians, and a large number of bird species. Bees and other pollinators, such as butterflies, use the flowers for nectar and/or pollen. Birds (including waxwings, thrushes, band-tailed pigeons, northern flickers, and grosbeaks), small mammals, and bears dine on its fruits—one or two-seeded drupes which are reportedly very high in fat—in summer and fall. According to the US Forest Service, “moose, elk, deer, bighorn sheep, mountain goats, beavers, and rabbits” commonly browse the stems; twigs and new shoots provide especially delectable and nutritious winter browse. Last, but not least, this shrub provides cover and important nesting habitat for songbirds, small mammals and amphibians, as well as host plants for the larvae of butterflies like the echo blue butterfly.

Cornus sericeaTry it at home
Although fairly shade tolerant, plants growing in full sun typically grow much more compactly than those in shade, usually bloom more profusely, and exhibit more stem color. Depending on the amount of sun it receives, red-twig dogwood can grow from about 6 to 16 feet tall, and nearly as wide, so it may be best to leave it out of very small gardens. If you have the space, use it in any moist area where you’d like spectacular aesthetic appeal as well as valuable wildlife habitat: At the back of a border, next to a rain garden, as a somewhat open screen, as part of a large hedgerow, or to stabilize eroding soil on slopes. Plant it in the fall to give it an easy start in life, adding some leaf compost if your soil is in poor shape. Allow future leaves to stay where they fall.

Damp soil is important, and slow-draining soil is not a problem (although this plant shouldn’t have its feet immersed in water for prolonged periods). Though its tolerance for drought isn’t terribly high, with a little shade and soil that’s rich in organic matter, infrequent summer watering during excessively hot periods should be all that is needed once it’s established (typically just a couple of years). And, allowing for a dry period at the end of summer is actually a good and natural thing (as long as the plant looks healthy), since a bit of drought prepares the plant for winter. Red-twig dogwood is often planted at restoration sites, which are rarely watered afterwards, and most usually do fine.

Grab a partner
Since red-twig dogwood grows in such a wide range of habitats, there are a number of plant friends with which it would like to live. For best ecological and gardening results, choose associated native plants that live in communities that currently grow or likely would have grown in your immediate area. In the Pacific Northwest, some of the plants that closely associate with red-twig dogwood include western redcedar (Thuja plicata), Douglas-fir (Pseudotsuga menziesii), vine maple (Acer circinatum), alder (Alnus spp.), willow (Salix spp.), aspen (Populus tremuloides), paper birch (Betula papyrifera), gooseberries (Ribes spp.), black hawthorn (Crataegus douglasii), lupine (Lupinus spp.), aster (Symphyotrichum spp.), and many others.


© 2016 Eileen M. Stark

To leave a comment, click on post’s title

 

Reimagining the Ecological Value of Cities for Dwindling Pollinators

Bombus vosnesenskii

A recent literature review on the ecology of urban areas published in Conservation Biology offers irrefutable evidence that cities can and ought to be havens for wildlife, specifically pollinators. In “The City as a Refuge for Insect Pollinators,” the authors, a group of multidisciplinary scientists from around the world, recommend that urban areas—particularly fast growing ones—be managed to support biodiversity.

Habitat loss, degradation and fragmentation, industrial farming, wildlife diseases, and widespread use of toxic pesticides have wiped out and continue to wipe out many insect pollinator species. Along with other invertebrates, we really don’t know how many are disappearing from the earth forever, although new studies show horrifying losses. Since urban sprawl is a major reason for the shocking loss of biodiversity, it’s surprising that historically, the consensus—even among conservationists—has been that cities can’t or don’t need to support wildlife. But many years of research on wild bees in urban areas proves that cities can or still do supply habitat for both pollinator abundance and diversity, and “in several cases, more diverse and abundant populations of native bees live in cities than in nearby rural landscapes.”

While we certainly need to also restore and protect rural and suburban lands, there’s a growing realization that “pollinators put high-priority and high-impact urban conservation within reach,” writes the team. “The relatively small spatial and temporal scales of insect pollinators in terms of functional ecology (habitat range, lifecycle, nesting behavior compared with larger mammals for example) offer opportunities for small actions to yield large benefits for pollinator health.” Small actions: they’re talking about you and me, as well as city planners. As the authors note, many residents understand the urgency and necessity, and are willing to help. Turning our yards into “real” Cedar waxwing in red-flowering currantgardens, complete with native plantings and other elements that support entire life cycles of local biodiversity, ought to be paramount. Priceless benefits to us (crop pollination and a chance to admire nature’s beauty), to countless other species that rely on plants or insects for food, and to plants (pollination), come with the package.

Urban conservation often aims to connect people to nature. This is, of course, a good thing, since nature education is extremely important—it’s been said many times that the more we learn about wildlife and natural processes, the more we will want to protect it. But if more effort was spent on wildlife itself and providing what it needs (large, undisturbed, interconnected areas of native flora), no doubt many species would be much better off. I always feel a need to apologize to startled birds and little mammals I encounter on walks in natural areas around the city. There’s a reason wildlife refuges often close off sections to pedestrians: many species are hypersensitive to human presence; they see us as predators and the stress harms them. It would be immensely beneficial if parts of urban areas were also simply left to the wild ones.

I can’t agree more with the authors. If we want to recover and protect pollinators and other wildlife globally, we need to tend to their needs locally. It will take policy makers, planners, and environmental managers, but also each of us, whether we work individually or engage with community organizers.

 

© 2016 Eileen M. Stark

To leave a comment, click on post’s title

Pacific Northwest Native Plant Profile: Western Wild Ginger (Asarum caudatum)

Asarum caudatum

Western wild ginger (Asarum caudatum) is an understory plant that offers wonderful texture in the form of deeply veined, evergreen, aromatic leaves that carpet the soil in shady conditions, soil protection, habitat for tiny creatures, and unusual, secretive flowers. The genus Asarum has about 17 species found in North America, China, and Europe; the name is the Latin form of the Greek asaron, of obscure origin. The species epithet, caudatum, means “tailed” and refers to the wispy, almost whimsical appendages of the sepals, which protect the flower.

And what a flower! Burgundy with a brownish tinge, and enchantingly mysterious in appearance, they typically bloom from April to July in Oregon. You may not even notice them unless you’re weeding on your hands and knees, or if you make a special point to seek out their intricate beauty at ground level. With charming little tails, a three-cornered shape, and a hairy cup that conceals the real flower, they are one of nature’s hidden little gems, observable only to soil dwellers or those two-legged creatures with a spirit of curiosity.

Asarum caudatum

How it grows
Western wild ginger is an often overlooked but ubiquitous member of various forest communities at low to middle elevations, from British Columbia south to California, and as far east as western Montana. With substantial tree cover and rich soils, these communities occur in areas with mild, wet winters and warm, dry summers, on fairly flat ground to moderate slopes. The available literature suggests that while wild ginger is not an early colonizer in the process of succession (a.k.a. “pioneer species”), it occurs in most successional communities, including stages that have some overstory canopy. In other words, they grow with established forest species that didn’t pop up overnight and won’t be found in recently disturbed areas, like clearcuts, burns, or landslides. They will do best with established native trees that offer protection and other rewards.

Wildlife value
Lustrous evergreen leaves provide protection for little arthropods and other tiny lives that frequent the forest floor, which may in turn supply food for some bird and herp species. The flowers attract beetles that (along with flies and gnats) pollinate them, as well as ants that are drawn to a fleshy appendage on its seeds that contain an oil. And it is thought that the plant may sustain native rodents in some parts of the region.

Try it at home
Wild ginger is a ground cover that creeps slowly by shallow, fleshy rhizomes; the closer you space plants, the faster they will fill in (generally, about three to four feet apart is adequate). In addition to reproduction via rhizomes, it sometimes spreads by seed, thanks to ants: After they dutifully and mightily drag an entire seed back to their nest, the oil is removed for their young and the remainder of the seed, still viable, is discarded onto the soil.

Optimal growing conditions include shade to part shade and moist, rich soil. If you already have a woodland garden complete with mature conifers, your soil will probably be adequately acidic and fertile (unless you’ve been removing leaf litter and such that should be allowed to stay!). If your soil is lacking in organic matter, or the top soil is shallow, add some compost as mulch (leaf compost is good) and allow future leaves to stay put.

Since wild ginger prefers moist soil, keep new plants adequately hydrated for at least the first couple of summers, especially if your site lacks many trees or is subjected to sunlight or heat. Plant it in the fall for best results.

This plant is a possible substitute for the invasive Bishop’s weed (Aegopodium podagraria).

Grab a partner
Wild ginger is a choice perennial for beneath native conifers like Douglas-fir, Western hemlock, Sitka spruce, grand fir, white pine, and Western redcedar, as well as deciduous smaller trees and shrubs such as red alder, vine maple, and California hazelnut. It is exquisite growing amongst smaller associated species such as sword fern, deer fern, goatsbeard, fairybellsfoamflower, trillium, and many others.


© 2016 Eileen M. Stark

Pacific Northwest Native Plant Profile: White spiraea (Spiraea betulifolia var. lucida)

 

 

Even though it’s growing and thriving in my front yard, it took an October trip to northeast Oregon’s Wallowa Mountains to remind me why I love white spiraea (aka shiny-leaf spiraea or birch-leaf spiraea), or botanically speaking, Spiraea betulifolia var. lucida. In Latin, lucida means “bright,” or “to shine,” and shine it does.

Uncommon, small (as shrubs go, typically about 3 feet tall), erect (usually) and deciduous, it’s a very attractive native plant that spreads slowly by rhizomes. Though its seeds are also perfectly capable of repopulating and may be distributed by birds, rodents, or wind, I find it’s not a strong self-sower. The U.S. Forest Service affirms that “overall seed production and dispersal is low” and “seedlings of white spiraea are rarely found.”

Besides its small stature that allows it to fit into fairly tight spots, it has many other attributes and I can’t imagine why it’s not planted more often in yards and gardens in the Northwest. It’s barely mentioned in my book, so here I give it its due.

In late spring to early summer, creamy white flowers — sometimes with a pale pink blush — show up in flat-topped clusters that are 2 to 5 inches wide. With occasional deep summer watering, it will sometimes bloom during late summer and even autumn as well. As the flowers mature they offer lovely, although fairly inconspicuous, golden brown seed heads that continue to delight.

Spiraea betulifolia var. lucidaBut the best is yet to come: Fall may be its prime season when oval to oblong toothed leaves turn lovely shades of gold, orange, red, and burgundy. The entire little shrub lights up like a flame above the dark, moist soil and fallen leaves beneath it.

 

 

How it grows
White spiraea naturally occurs in parts of western Canada, Washington and Oregon, and as far east as Montana. It grows along streams and lakes, in mountain grasslands and on the slopes of forests (especially rocky ones) both east and west of the Cascades, from sea level up to about 4,000 feet, although it can be found at higher elevations in moist forests. Since it’s best to grow native plants that are indigenous to your area, find out whether it occurs naturally in your county with this USDA map.

Last week I was pleasantly surprised to find it in the Wallowa-Whitman National Forest along the Wallowa Lake Trail and the Hurricane Creek Trail near Joseph, Oregon. Since these areas can get quite dry in summer, the plant’s drought tolerance is likely due to its rhizomatous ways. Often surviving in burned areas, fire kills the aboveground part of the plant, but it resprouts from “surviving root crowns, and from rhizomes positioned 2 to 5 inches (5-13 cm) below the soil surface,” according to the US Forest Service. Along the Hurricane Creek Trail, which meanders through a burned area, white spiraea was joined by “pioneer” species like western yarrow (Achillea millefolium var. occidentalis), and western pearly everlasting (Anaphalis margaritacea).

Wildlife value
The flowers—often with an extended bloom time—offer pollen and/or nectar for pollinators such as native bees, syrphid flies, butterflies, moths, wasps, and ants. Leaves and branches offer a bit of cover for small creatures, and fallen leaves protect the soil and overwintering invertebrates, which provide food for myriad other species. It’s reportedly rather unpalatable to mule deer and elk, for those of you wanting native plants that won’t get munched on overnight.This image has an empty alt attribute; its file name is S.-lucida-w-bumblebee-1.jpg

Try it at home
White spiraea is a fantastic little shrub that can be used in the places that a large shrub would outgrow in a few years. It’s also quite versatile when it comes to both light and moisture conditions. Since it’s an understory plant, it can handle quite a bit of shade to a fair amount of sun, but seems to do best in a mix of both. A restoration project in Montana found that the plants did much better on east or south-facing slopes, rather than west-facing slopes that get scorchingly hot afternoon sun. At the Portland community garden where I rent a plot for growing veggies, white spiraea was planted (before I acquired my plot) in native beds that border the garden. The beds provide a little test because the sunlight that reaches them varies from just a few morning rays to about a half day of sun to nearly all-day sun. Echoing the Montana study, the spiraeas that do best are in a partly shaded area; many of the ones planted in a narrow sunny strip along a hot concrete walkway died, while those in full shade survive, but don’t look their best or flower much.

Spiraea betulifolia var. lucida

Place them about 3 or 4 feet apart and at least 2 feet from walkways, since they will eventually spread (slowly) and you don’t want to be constantly pruning them back. Amending soil with some organic matter (like compost) will help them get established, although they are quite tolerant of clay soil, as well as rocky soil. Mulch them with a natural mulch (like leaves) and keep them well watered the first 2 to 3 years, after which they should be quite drought tolerant (unless you plant them in all-day sun, which I don’t advise).

Grab a partner
Grow white spiraea with associated species that naturally occur in your area to help provide an eco-functional space for wildlife. It naturally occurs within Douglas-fir, grand fir, ponderosa pine, and lodgepole pine communities. Though shrubs and perennials in those communities are far too numerous to list here, consider serviceberry (Amelanchier alnifolia), red-twig dogwood (Cornus sericea), blue elderberry (Sambucus nigra ssp. caerulea), and Cascade Oregon grape (Mahonia nervosa). As always, buy plants that come from locally-sourced material at reputable nurseries.

 

© 2016 Eileen M. Stark

To leave a comment, click on post’s title

 

Pacific Northwest Native Plant Profile: Goat’s beard (Aruncus dioicus)

Aruncus dioicus (goatsbeard)

I finally managed to take out a very large hosta plant in my front yard. I really hate to remove healthy noninvasive plants, however non-native they may be (especially when they’re pretty), but we all know that “pretty is as pretty does,” right? Originating in northeast Asia, hostas really have no function here other than looking nice with those ultra-inflated leaves. I don’t think I’d ever seen a native pollinator on its blossoms, let alone a nonnative honeybee. Plus, it was overpowering a fern that belongs in this neck of the woods.

In its place now is a goat’s beard plant (Aruncus dioicus) that had volunteered in the back yard, courtesy its frisky goat’s beard parents. Also known as “bride’s feathers,” it is not only eye-catching while in bloom, but has local ecological function that hostas can only dream about. It also fits well into the shade-loving native spread near the north side of my house, sharing space with a surprisingly robust western maidenhair fern (Adiantum aleuticum), evergreen huckleberry shrubs (Vaccinium ovatum), Cascade Oregon grape (Mahonia nervosa), sword ferns (Polystichum munitum), and native ground cover that includes wild ginger (Asarum caudatum) and inside-out flower (Vancouveria hexandra), all of which can be found growing with goat’s beard in nature.

Aruncus dioicus foliageWith compound, pointy, toothed leaves that have a lovely texture, this plant is particularly fetching in springtime when its leaves are new. The main show begins in early to mid-summer, when tall, feathery plumes composed of tiny, creamy-white flowers rise above the foliage. Male plants are more spectacular in flower than female, but regardless of gender, it offers a stunning presence in shaded to partly-shaded borders, under tall trees, or as a deciduous screen or short hedge.

Wildlife value
Goat’s beard attracts quite a few insect species, including native bees, syrphid flies, teeny tiny beetles, and — if you’re lucky — mourning cloak butterflies (your odds will increase if you already grow their host plants, which include native willow, birch, hawthorn, and wild rose). Small birds may eat the seeds, so leave the spent flowers to overwinter.

Try it at home
Found in most of western Washington, Oregon, and northern California, goat’s beard naturally occurs along streams, in wet ravines, and in moist meadows and forests, but also sometimes in disturbed areas such as roadsides. As such, it likes moist, rich soil (so add compost and allow nature’s mulch—fallen leaves—to remain on soil), but can handle some drought when fully established. Although it does best with at least a half day of shade, it can be grown in nearly full sun in cool, northerly locations. When goat’s beard is happy, it will stabilize soil and eventually form a large clump, 3 to 5 feet tall and as wide, so space plants 3 to 5 feet apart. Both male and female plants need to be planted nearby if seedlings are desired. Grow them with associates (those that naturally grow together and depend on each other), including Douglas-fir, western hemlock, western red cedar, vine maple, deer fern, maidenhair fern, western bleeding heart, inside-out flower, wild ginger, and western trillium. Enjoy!

 

© 2016 Eileen M. Stark

To leave a comment, click on post’s title

An Underappreciated Insect: The Syrphid Fly

Toxomerus occidentalis, female slurping nectar on Erigeron specious (showy fleabane)

Toxomerus occidentals (female), soaking up nectar on showy fleabane (Erigeron specious)


Beneficial in many ways, syrphid flies — also called flower flies — 
are true flies in the order Diptera, family Syrphidae. Some can be recognized by their ability to dart around as well as hover in the air in one place, wings nearly invisible, as they search for flowers on which to feed—somewhat like a tiny helicopter, but with much more grace (this flair led to their other common name, hover fly). They come in various shapes and sizes (typically 1/4 to 3/4 inch in length); the tiny ones require a hand lens or macro lens to get a good look. And when you do, you’ll be amazed at the beautiful patterns and bright colors that often serve to mimic dangerous looking bees or wasps and fool predators like birds into leaving them alone (but don’t worry, they couldn’t sting you if they wanted to!).

Syrphids in the genus Spilomyia often mimic wasps, with vivid yellow and black patterns and modified antennae.

Syrphids in the genus Spilomyia often mimic wasps, with vivid yellow and black patterns and modified antennae.


Multi-functional

Not needing to carry and store pollen for their young (like most bees do) doesn’t prevent them from being extremely important pollinators. Researchers have found that although syrphid flies pollinate less effectively per flower visit, they visit flowers more often, resulting in essentially the same pollination services as bees. And, it’s thought that they may be more tolerant of the landscape changes that we humans insist on, than bees are.

But syrphid flies are not only important as pollinators in gardens, organic farms, and wild areas. During their immature stage, most species that are found in gardens and nearly half of the 6,000 syrphid fly species worldwide are voracious consumers of aphids, scale insects, and other soft-bodied pests. In coastal Central California, researchers compared romaine lettuce sprayed with an insecticide and lettuce without insecticide. They found that syrphid larvae were primarily responsible for suppressing aphids in organic romaine lettuce, and called the sprayed lettuce “unmarketable.” Other types of syrphid fly larvae are either (1) scavengers that tidy up ant, bee, and wasp nests, (2) feeders of plant material, tree sap, and fungi, or (3) decomposers that feed on decaying organic matter. To add to their achievements, larvae are reportedly more effective in cool weather (as in early spring) than most other such predators.

Myathropa florea, male. Larvae feed on bacteria at the base of trees or in decaying leaves.

Myathropa florea, male. Larvae of this species feed on bacteria at the base of trees or in decaying leaves.


Life Cycle

Females lay their tiny, elongated eggs singly on leaves—typically near aphid colonies, so food is within reach—and they hatch in a few days. The tapered, grub-like larvae are blind and legless, but the mouths of these aphid-eaters are equipped with triple-pointed darts that enable them to pierce and suck their prey dry. At maturation, the larvae are promoted to the soil to become pupa and, eventually, adult flies. Their life cycle takes several weeks; reportedly three generations per year are typical in the Northwest. Most syrphid flies overwinter as larvae in leaf litter—yet another reason to not remove fallen leaves from soil!

Close encounters
The best way to spot these helpful, colorful little insects in your garden is to move slowly and quietly, and observe carefully. Sometimes all I have to do is pause next to a group of flat-topped flowers (white or yellow ones seem to be their favorites), and within a few minutes one or two will show up to eat (and to dazzle me—in morning sunlight these exceptional little pollinators shimmer!). I’ve photographed nine different species in my small yard, and I’ve just started. Hopefully I’ll encounter many more of these fascinating little flyers in the years to come.

To avoid confusion with bees and wasps, just remember that syrphid flies have huge compound eyes (which help to determine their gender—female eyes are spaced slightly apart while males’ come together at the top of their head); their bodies are sometimes flatter than bees and wasps; their antennae are usually very short; they don’t carry pollen around like most bees do; they have one pair of wings (unlike bees and wasps that have two pairs). The second pair of wings of flies has been reduced to two little knobs called halteres, which can be seen in the photo below. Halteres function like tiny gyroscopes that allow them to stay balanced by detecting and correcting changes in rotation while flying, and enable their zippy acrobatic flights.

Although the mouth parts of syrphids vary between species, allowing different species to access nectar in differently shaped flowers, their typical mouth is basically a retractable extension with a spongelike tip that can soak up either nectar or pollen. The species that have this can only feed on open flowers that have easily accessible nectar. Some species have a modified mouth that allows them to feed at elongated, tubular flowers.

The halteres can be seen at the base of the wings.

The halteres can be seen at the base of the wings.

 

Conservation
Syrphid flies have been studied very little in the U.S., but European research has shown that species diversity has fallen in areas of intensive human activity. According to the Xerces Society, in Britain, seven of the 22 flies for which Biodiversity Action Plans have been prepared are syrphid flies. Given the substantial loss of pollinators induced by habitat loss, pesticides, nonnative species and climate chaos, and the profusion of others in danger of extinction, there is a definite need to conserve all types of wild pollinator communities.

Providing for these flies is similar to most other pollinators: A variety of flowers from spring till fall for adults, and appropriate habitat for egg laying, larval development, and overwintering. Attract and nurture syrphid flies with a diversity of native plants that provide a lot of nectar and pollen (females need pollen to produce eggs). In the Pacific Northwest, try yarrow (Achillea millefolium var. occidentalis), stonecrop (Sedum spp.), goldenrod (Solidago canadensis), blue-eyed grass (Sisyrinchium spp.), fleabane (Erigeron spp.), white spiraea (Spiraea betulifolia var. lucida), mock orange (Philadelphus lewisii), and aster (Symphiotrichum spp.). The flowers of chamomile, dill, parsley, and other garden herbs with flat-topped flowers are also very attractive to them, as is the pollen of grasses and sedges that’s often available early in the season. Be sure to allow leaf litter and downed wood to remain on soil to help them get through the winter and to provide food for the decomposer types.

Aphid remedy
If you have an aphid problem on some plants, remember that predatory insects that keep pests at acceptable levels need prey like aphids. Always inspect aphid colonies for syrphid fly larvae before even thinking about control, even “organic” remedies. Use only plain water to spray off aphids (that can’t climb back on), but only if necessary. Never, ever use insecticides, to which syrphid flies and other creatures are very sensitive. Usually, just turning your back is the best thing: One summer a large patch of native bleeding heart (Dicentra formosa) in my backyard was absolutely infested with aphids. I decided to let nature take her course—cheering on the ladybird beetles and birds who flourished with the situation. As the leaves died back (as they do naturally when the heat of summer arrives) I forgot about the aphids. The following year there were scarcely any on the bleeding heart, but I found another species of aphid on nodding onion (Allium cernuum); again I did nothing and nature took care of it. The following year the wild onion and bleeding heart were fine, but the aspen trees were stricken. Yet again, ladybugs, lacewings, and several species of songbirds took advantage of the generous buffet. The following year there were no outbreaks in my yard, at least none that I noticed.

 

Syrphus opinator (female) on Spiraea betulifolia var. lucida

Syrphus opinator (female) on white spiraea (Spiraea betulifolia var. lucida)

 

Eristatis male on yarrow (Achillea millefolium var. occidentalis

Eristalis sp. on yarrow (Achillea millefolium var. occidentalis)

 

© Eileen M. Stark 2016

To leave a comment, click on post’s title

 

Beyond Bees: The Underappreciated Pollinators

Common ringlet (Coenonympha tulle)
The majority of flowering plants evolved to take advantage of insects, and depend on them (and less commonly, other animals or wind) to fertilize their flowers, facilitate gene flow, and prevent inbreeding. Bees might be the most obvious pollinators, and on a warm summer day it seems flowers and bees were made for each other. Native bees, including the 90% of species native to the U.S. that are solitary rather than social — that is, females create nests and raise their young without the help of any other bees — are considered to be the most important pollinators (move over, European honeybees!) and are invaluable members of natural systems. But other capable pollinators—like butterflies and moths, hummingbirds, wasps, ants, herbivorous fruit bats, and even rodents—share the pollen distribution workload, and offer ecological benefits as well. Less well known are the thrips, beetles, mosquitoes (yes, you read that right), and flies that are actually quite accomplished pollinators. Distributing pollen may be a sideline for them, but they often excel because they don’t take pollen back to their nests, as most bees do.

Thrips go way back—to the Permian period, over 250 million years ago—but get a bad rap because of a few species that threaten crops. Studies show that they are strong pollinators of some plants, particularly early in the season when most other pollinators aren’t around.

The adult ornate checkered beetle (Trichodes ornatus) feeds on flowers such as wild buckwheat (Eriogonum spp.), transferring pollen from anther to stigma.

The adult ornate checkered beetle (Trichomes oranatus) feeds on flowers such as wild buckwheat (Eriogonum sp.) and helps transfer pollen from anther to stigma.

Beetles are particularly important in semi-arid parts of the world and have a highly developed sense of smell. They are expert and essential pollinators, according to the Forest Service, and also were around millions of years before bees appeared. Like many species of birds, bees, and butterflies, beetles are in danger of extinction. The International Union for Conservation of Nature lists over 70 beetle species as endangered. The main threats include habitat destruction, chemical pollutants (e.g., pesticides), displacement by introduced species, and hybridization with other species due to human interference.

Although many flies (order Diptera) are recorded as flower visitors, relatively little is known about pollination by flies, compared to other more obvious pollinators. Many flies are strong pollinators, including syrphid flies (which deserve their very own special post) as well as some tachinid flies, which are the most diverse family of the order Diptera (true flies). As adults, they are flower visitors, feeding on nectar and/or pollen; in their larval stages many species help to control insects that we consider pests.

Suillia spp. attracted to bear grass (Xerophyllum tenax) receives a pollen reward.

Pollination by insects is usually mutually beneficial. Here, a fly (Suillia variegata) attracted to bear grass (Xerophyllum tenax) receives a pollen reward and the flower gets fertilized.

While I’m not advocating the nurture of mosquitoes in your garden (the females do suck blood and can carry disease, after all!), it’s noteworthy that mosquitoes, like all insects, do have a role in natural systems. Their primary source of food is flower nectar (with males eating nothing but nectar) and they buzzily and incidentally carry pollen from flower to flower. Plants like goldenrod (Solidago spp.) use mosquitoes as pollinators, as do orchids of northern latitudes, grasses, and many other types of plants. And they are a source of food for birds, fish, amphibians, spiders, bats, dragonfly larvae, and other animals.

How you can help a variety of pollinators

Within our increasingly fragmented landscapes, gardens that provide pollen and nectar-rich plants—as well as nesting and overwintering sites—can create critical habitat and connections for pollinators and other creatures. No space is too small, and when in close proximity to other larger gardens, natural areas, or greenways that sustain native plant populations appropriate to the region, their value deepens.

◊ Choose natives that occur naturally in your area, or at the very least heirloom ornamentals (rather than newer hybrids that may not provide sufficient or appropriate nutrients that native species do). Some garden herbs like cilantro, parsley, and dill attract some pollinators when allowed to flower.

◊ Avoid nonnative invasive species like “butterfly bush” (Buddleia davidii) that sound good, but aren’t.

◊ Provide structure and layering in the form of native trees and shrubs that provide food, cover and nesting sites for various pollinators.

Syrphid _ Eumerus sp.

Syrphid fly (Eumerus sp.) on Sedum spathulifolium, a west coast native.

◊ Plan for continuous flowering, spring through fall. Early spring nectar is particularly important for early-emerging queen bumble bees and other solitary bees, as well as flies and beetles.

◊ Choose a variety of plants that differ in the size, shape, and color of blossoms to attract a variety of pollinators. Arrange perennials in drifts or swaths of at least three of a kind, rather than singly here and there. And don’t forget that trees and shrubs produce flowers!

◊ Stay away from pesticides and other chemicals. Insecticides, herbicides, fungicides, and synthetic fertilizers are particularly harmful to sensitive pollinators. Don’t purchase plants pre-treated with neonicotinoids; if you’re unsure, ask.

◊ Don’t be too neat. Leaf litter, dead wood (tree snags or piles of branches), and other natural detritus provide essential habitat, nesting materials, and overwintering sites for adult pollinators or their eggs, larvae, or pupae. And allow some bare soil for pollinators that nest in the ground.

◊ Grow lepidoptera (butterfly and moth) host plants that provide food and habitat for their young. Find out which species frequent your area and grow the native plants that they need to breed.

◊ Provide shallow water and some moist soil. A shallow pie plate or flowerpot saucer, filled with clean gravel or small rocks allow insects to drink without drowning. Also, butterflies and moths need muddy or sandy puddles to obtain water and nutrients. Add a dash of salt to be sure male Lepidoptera get enough sodium prior to mating.

Please see this post for more detailed info on supporting pollinators in all their life stages.

© Eileen M. Stark 2016

To leave a comment, click on post’s title

Attract Ladybird Beetles (“Ladybugs”) to Your Northwest Garden Humanely

_MG_2279

The Western blood-red ladybird beetle (Cycloneda polita) — one of about 90 species throughout the Pacific Northwest and about 6,000 species worldwide — is tiny (4 to 5 mm), but like most others in the Coccinellidae family, is a voracious consumer of aphids, scale insects, and mites; a few species eat fungi. Revered for centuries due to their role as a pest controller, ladybird beetles at one time were even thought to have supernatural powers. The “lady” for whom they were named was the “Virgin Mary.” Once you have these native predators in your garden you’ll want to keep them, and there’s an easy way to do that.

But first, a little about these endearing little insects, the vast majority of which are beneficial: The most obvious ladybird beetles (often called “ladybugs” in North America, although they are not true bugs) evolved a brightly colored shell to exhibit what biologists call aposematic (warning) coloration, which functions to repel and warn predators that they taste awful (due to production of toxic and unpalatable alkaloids). The “eyespots” on their pronotum (that covers the thorax) are a form of mimicry, possibly to further fool a predator by appearing dangerous, or by adding to the inedibility factor. Their actual face is the tiny black and white portion with brown antennae that you can see in the photo above. The Western blood-red ladybird beetle is plain and without spots, but some species have remarkable color patterns that vary greatly and make identification difficult. Other species lack dramatic coloration.

Life Cycle
Adults are commonly seen on plants in spring and summer, foraging for small invertebrate prey (often aphids), although they will eat nectar, water, or honeydew (the sugary secretion from insects like aphids and white flies) when food is scarce. They overwinter by hibernating in large clusters, often spending the winter under leaf litter, rocks, downed wood, or other debris. If they get into your house in autumn as temperatures plummet, please don’t kill them. Since they need cool temperatures and moisture during the winter (which our homes lack), gently place them back outside under fallen leaves. In hard to reach places (like ceilings) I suggest fastening a piece of lightweight fabric (perhaps a lightweight sock or piece of nylon stocking) onto the end of a vacuum cleaner hose with a rubber band, so that an inch or two of fabric protrudes into the hose. Then, with the power turned down as low as possible, quickly suck them into the fabric, gently remove the fabric with the beetles, and release them under a pile of leaves outdoors. To help prevent future interlopers, caulk cracks and crevices around doors and windows and repair any damaged siding that’s allowing them to get in.

Ladybird beetle larvae are long and flat and are usually covered with little spines, spots and stripes, and resemble tiny alligators. Though sometimes erroneously mistaken for pests, they are completely harmless to humans. Usually found in or near aphid colonies, they feed voraciously on insects for several weeks, then pupate on leaves. Some species produce several generations per year, while others have only one. During the summer, all stages may be seen.

How to Acquire
The best way to get these hungry predators into your garden is not to purchase them, but to provide native habitat and not use any insecticides. The food that they need comes from native plants that naturally attract insect herbivores. In my yard I notice Cycloneda polita (pictured) feeding on lupine (Lupinus spp.), western bleeding heart (Dicentra formosa), fleabane (Erigeron spp.), honeysuckle vines (Lonicera ciliosa and L. hispidula), and this year for the first time, aspen trees (which are also attracting birds like bushtits and kinglets who love to eat aphids).Western blood-red ladybird beetle

Don’t buy them
In the early 1900’s, literally tons of Asian beetles were collected and shipped to agricultural fields. Tragically, over half died during shipments and most of the rest quickly dispersed before the wretched experiment finally ended. Today, ladybird beetles are again popular, but beware the ramifications. According to Judy and Peter Haggard, authors of “Insects of the Pacific Northwest” (Timber Press, 2006), the commercial exploitation of ladybird beetles involves collecting them while they are hibernating, which can be devastating to their populations. “Those innocent-looking mesh bags … in the local garden shop actually represent a cruel and unconscionable practice: Ladybird beetles sold in retail stores are usually exposed to high temperatures, low humidity, and no food for weeks. Even if they survive until bought and released, they are often so weakened, they die soon after being released.” And the ones who do survive usually quickly disperse to areas other than your yard. Bottom line: Don’t purchase them.

To add to the destruction, beetles sold commercially are usually not native species and, as such, are a serious threat to native insect species, including native lady beetles. According to the Oregon Department of Agriculture, “Even species native to North America but collected outside of Oregon should not be released because they may carry diseases and parasites not found in Oregon.”

 

© Eileen M. Stark 2016

To leave a comment, click on post’s title

Fragrance in a Northwest Garden: Western mock orange (Philadelphus lewisii)

Philadelphus lewisii

Had Carl Sandburg penned a poem about the way a captivating scent wafts through the air — prior to his famous “Fog” — he might have written that it approaches us “on little cat feet.” Like fog, scent is silent and invisible and adds a fresh, sensual dimension to a garden (or a walk in the woods for that matter). One of the most fragrant flowering shrubs is mock orange, and the Pacific Northwest’s native offering, Philadelphus lewisii (Western mock orange or Lewis’ mock orange), doesn’t disappoint. Plan ahead and place this medium-sized deciduous shrub where its fragrance can be noticed.

Philadelphus lewisii is named after scientist and explorer Meriwether Lewis, who collected it in 1806 during the Lewis and Clark expedition. Native Americans had numerous uses for it, including making tools, snowshoes, furniture, and even soap.

How it grows
Although there is quite a bit of individual variation within this species, the structure and growth pattern of this particular shrub goes something like this: Maturing at 5 to 10 feet tall and nearly as wide, this fairly fast grower may send out arching basal shoots as it ages, and eventually become a thicket. In late spring, flowering shoots appear, followed by vegetative growth. Rich green, egg-shaped leaves (roughly three inches long) grow in pairs along its stems. At the tips of branches, multiple clusters of white, four-petalled blossoms adorned with soft yellow stamens emerge in late spring or early summer and sparkle against a green, leafy backdrop. Flowers measure one to two inches in diameter, and offer a lovely, fruity fragrance.

Wildlife value
Mock orange’s fragrance doesn’t just appeal to us, though—it attracts nocturnal moths and butterflies like the western tiger swallowtail. As they feed on its nectar and incidentally brush against theSyrphid fly on Philadelphus lewisii flower’s anthers, thousands of male pollen particles are released, pollinating its flowers. Other pollinators attracted to scent include bees, but also syrphid flies (aka flower flies), which are particularly fond of white and yellow flowers. In late summer into winter, mock orange’s wildlife appeal continues as the plant’s tiny seeds are consumed by many species of birds, including goldfinches, as well as squirrels. It also provides twiggy cover year round.

Try it at home
Mock orange is easy to grow. It tolerates both drought (after it’s established, of course) and moisture, and will do well in full to part sun or in a fair amount of shade (but not deep, dark shade). It’s also a good shrub for stabilizing soil on slopes due to a fibrous root system. While it’s not fussy about soil, if your soil’s in bad shape consider incorporating and/or mulching with some decomposed organic matter (like compost) to get it off to a good start.

It’s best to let native plants attain their natural size and habit, but if yours was placed too close to a path or some such, pruning may be necessary. Mock orange should only be pruned soon after flowering since next year’s blossoms develop on the previous year’s growth.

Philadelphus lewisii

 

Grab a partner
Though not common, western mock orange is widespread. It occurs naturally from southern B.C. to northern California and the Sierras, and east to Alberta and western Montana, at low to mid-elevations. Growing along creeks and seeps and forest edges, on hillsides, and within chaparral and pine and fir communities, it associates with species such as Douglas-fir, oceanspray, ninebark, osoberry, baldhip rose, tall Oregon grape, and others. If space allows, try it as a member of a multi-species (unclipped) hedgerow (should pruning be necessary, do it soon after flowering, so that the following year’s blossoms aren’t affected). To stimulate flowering on older shrubs, cut back flowered growth to strong young shoots, cutting out up to 20 percent of aging stems near their base.

Other fragrant PNW plants include wallflower (Erysimum capitatum), Nootka rose (Rosa nutkana), clustered rose (Rosa pisocarpa), bald hip rose (Rosa gymnocarpa), Oregon grape (Mahonia spp.), fringecup (Tellima grandiflora), serviceberry (Amelanchier alnifolia), checker mallow (Sidalcea spp.), oceanspray (Holodiscus discolor), some ceanothus (Ceanothus spp.), bear grass (Xerophyllum tenax), milkweed (Asclepias spp.), madrone (Arbutus menziesii), and black hawthorn (Crataegus douglasii). Enjoy!

 

© 2016 Eileen M. Stark

To leave a comment, click on post’s title

Gifts of the Oregon White Oak (Quercus garryana) aka Garry Oak

Quercus garryana at Ridgefield NWR


Spring still seems out of reach
, so while we’re awaiting balmier days, let’s take a moment to appreciate some of nature’s subtle, yet generous gifts. We owe everything to the natural world and even modest contact with it refreshes and offers solace. While contemplating the obvious things that nature provides—food, water, clean air—it’s easy to overlook the little (and not so little) things.

Plants, the primary producers on this planet, belong to irreplaceable, intricate, ancient ecosystems, within which they support and depend on other species—both flora and fauna— to survive. I like to think of it as everlasting give and take. This post honors one of my favorite Pacific Northwest natives whose gifts are mammoth. Quercus garryana, commonly called Oregon white oak (or “Garry oak” by those in British Columbia and Washington), is a slow-growing, very long-lived, majestic, deciduous tree that, with time, grows beautifully gnarly. As a keystone species, oak trees are vibrant communities in themselves, and support more life-forms than any other trees in North America.

Wildlife hotspot
Late last fall, while strolling along a trail at Jackson Bottom Wetlands Preserve (just west of Portland), I was awestruck by the amount of life attracted to the broad canopy of just a single mature Oregon white oak: Visible and audible were multiple white-breasted nuthatches, black-capped chickadees, downy woodpeckers, and red-breasted sapsuckers, all busily going about their foraging business with such enthusiasm that all I could do was look upwards, my mouth agape. The birds weren’t seeking the tree’s highly nutritious acorns, which sustain many other birds, as well as insects, mammals, and reptiles—they were consuming a tasty assortment of insect herbivores, which oak trees are particularly adept at generating. Studies show that the genus Quercus hosts more caterpillars and other insect life than any other genus in the northern hemisphere. This proficiency is especially important during breeding season, when the vast majority of landbirds consume and feed their young highly nutritious insects or their larvae, and other arthropods such as spiders—not seeds or fruit. Other studies show a higher diversity of bird species in oak forests than in nearby conifer forests (although pine forests are quite exceptional as well).

Like other native keystone tree species, Oregon white oak peacefully regulates ecosystem processes like nutrient cycling and energy flow, which provides benefits to wildlife (and the rest of us) that seem endless. Besides the obvious shade, beauty, and exchange of oxygen and carbon dioxide that these trees offer (trees really are the best carbon sink), inconspicuous flowers—which typically bloom in late spring—provide for pollinators like native bees, while the buds of forthcoming rounded, deeply lobed leaves play host to the larvae of gray hairstreak, Lorquin’s admiral, echo blue, California sister, and propertius duskywing butterflies. Speaking of leaves, it typically retains dead leaves on its branches until spring, a process known as marcescense. (It’s believed that marcescense, which is more common on young trees, may serve to protect new buds on branches by discouraging browsing animals from grazing. There’s also speculation that marcescent leaves help oaks create a nutrient-rich mulch when the trees need it most —in springtime. But no one knows for sure.)

In addition, cover, perches, and nesting habitat go to birds such as woodpeckers and vireos, as well as native squirrels. Oaks’ acorns sustain squirrels and other mammals, as well as many bird species. Fallen leaves, which might provide habitat for arthropods, amphibians and reptiles, slowly break down into a rich leaf mold that supports soil-dwelling invertebrates and numerous fungi that allow neighboring plants to thrive. Sugars and carbon are provided for mycorrhizal fungi, which reciprocate with nutrients for growing plants and contribute to the soil carbon pool. Intact bark creates microhabitat for mosses, as well as lichens that supply food, shelter, and nesting material, while loose bark and twigs contribute to nest building as well as browse for deer, which in turn feed carnivores like cougars.

And as oaks deteriorate with advanced age (which can be 500 years), they continue to deliver. Dead trees can last many years as snags, which provide food, nesting material, and housing to cavity nesters like owls, kestrels, woodpeckers and chickadees, as well as bats who may roost in old holes or under loose bark.

How it grows
Elevation, climate, soil, and water persuade Oregon white oak to vary immensely in habit and size. While it thrives in cool, coastal areas and near the edges of streams and wetlands where it tolerates seasonal flooding, it also flourishes in droughty inland sites where it may grow both individually and in groves on low hills surrounded by grasslands. When it occurs on gravelly sites or rocky slopes with thin soils, it often has a shrub-like or scrubby habit. Along the blustery Columbia River Gorge, where it grows with little rainfall and atop hundreds of feet of layered basalt, harshly battered trees grow gnarled but hang on thanks to a very extensive and strong root system. As seedlings, this oak’s root mass may be ten times as large as the aboveground growth.

Within the richer, deeper, riparian soils amongst tapestries of dazzling wildflowers and grasses in the Georgia Basin-Puget Trough-Willamette Valley ecoregion of British Columbia, Washington and Oregon, it acts as a keystone structure, typically growing a very broad canopy, and reaching heights 100+ feet over hundreds of years. Gigantic root systems may grow two or three times wider than the canopy. The ecoregion includes savannas (grassland with trees scattered at least 100 feet apart), upland prairies (another type of grassland), wet prairies, and shady oak woodlands with a continuous or semi-open canopy. I’ll call them, collectively, prairie-oak ecosystems.

Endangered ecosystems
To really appreciate an oak, it’s helpful to know something about its unique ecosystems that once provided some of the richest habitat in the world. The historic range of Q. garryana stretches from low elevations of southwestern British Columbia (including Vancouver Island and nearby smaller islands) to California. In Washington, it occurs mainly west of the Cascades on Puget Sound islands and in the Puget Trough, and east along the Columbia River. In Oregon, it is indigenous to the Willamette, Rogue River and Umpqua Valleys, and within the Klamath Mountains.  

When pioneers and naturalists encountered prairie-oak ecosystems, they found a breathtakingly beautiful and rich mosaic of plant and animal life. Journals of early Oregonians described massive prairies with five-mile-wide dense forests of ash, alder, willow, and cottonwood that skirted meandering rivers within floodplains. Marshes and sloughs developed during high water periods but often dried out by late summer. At higher elevations within these forest corridors were oak and associated trees. Above the floodplains were upland prairies, filled with herbaceous plants and grasses that could tolerate the parched soil of summer, as well as winter wet. Oak woodlands stood on low hills above the valley floors, surrounded by grasslands, also known as savanna.

But the landscape was not untouched or pristine. Aboriginal peoples managed parts of the ecosystems following the last glacial period, frequently using prescribed burning to boost edible plant productivity, aid the hunting of wildlife, limit the growth of conifers, and facilitate travel, particularly in the northern parts of the oak’s range. Harvesting of plants such as camas (Camassia spp.) and chocolate lily (Fritillaria affinis) also caused soil disturbance, but their eco-cultural manipulations pale greatly compared to what came later.

Since Euro-American settlement, as much as 99 percent of the original prairie-oak communities that were present in parts of the Pacific Northwest have been lost and many rare species dependent on them are at risk of extinction. Extensive destruction and fragmentation began with settlement in the 1850s, with clearing, plowing, livestock grazing, wildfire suppression, and cutting of trees for firewood and manufacturing. Prairie wetlands bejeweled with wildflowers were drained and ditched. Later, subsidies to ranchers encouraged more destructive grazing, while urban sprawl and agricultural use—fueled by human population increase—intensified. Invasion of nonnative species, and the encroachment of shade tolerant and faster growing species—that proliferate with fire suppression—outcompeted oaks and decimated additional native flora and fauna. Prairie-oak ecosystems and associated systems still continue to disappear at human hands, and isolation of the tiny remaining fragments prevents the migration of wildlife and healthy genetic material from one area to another. Other detrimental factors include diseases and parasites, climate change, and the loss of wildlife that cache acorns and perform other essential functions.  

Conservation
Despite continual destruction, there is a renewed and growing appreciation for the diversity and beauty of these habitats, motivated by recognition that we are responsible for what’s been destroyed, an admiration for the interconnected wild species the habitat supports, and a reverence for an iconic, magnificent tree. Intervention has become intensive, and collaborations and partnerships—along with private landowners, who are key partners—are working to reverse the downward trend with preservation, restoration, and management tools, although “a major restoration challenge is restoring wet prairie habitat to a level at which it can maintain resistance to invasive species,” according to the Institute for Applied Ecology.

Regeneration of oak seedlings is essential, but is often difficult. Acorns look tough, but they are viable for only about a year and may be subject to parasitism, weather extremes, and genetic isolation. Consequently, just a small percentage become trees. Two independent studies determined that oak seedlings do best when caged, but protection from other deterrents—drought, competing plants, and rodents—is important, depending on location.

Regional conservation groups include the Garry Oak Ecosystems Recovery Team and the Cascadia Prairie-Oak Partnership.

Try it at home
While the maintenance of only fragments of a past ecosystem is a poor alternative to former richness, if you live in the ecoregion (or other impoverished oak-dominated ecosystem) and want to help, choose this native tree. Even a single isolated tree can be a critical habitat structure on the landscape. It’s the only oak native to Washington and western Canada, and the dominant one in Oregon (black oak—Quercus kelloggii—is another beautiful and valuable large tree that occurs from Lane County, Oregon, south to Baja, at low to high elevations).

An Oregon white oak tree needs a mostly sunny, well-drained site that can accommodate its eventual size aboveground (25-50 feet wide, depending on spacing) and enormous root systems described above. Those grown on poor, dry, rocky sites will grow quite a bit smaller and have a shrubby habit. When planting more than one, space trees 20 to 60 feet apart, using the closest spacing only in dry, rocky terrain. It may be most helpful to visit a nearby natural area and then try to mimic nature’s arrangement.

To maintain genetic integrity, always choose trees or seeds that originated from trees close to your location and from similar terrain. For best results, plant dormant saplings in late fall after rains begin. After watering, apply about three inches of an organic mulch to reduce evaporation and keep weeds (that can steal water and nutrients) down. I prefer low-nitrogen leaf compost, spread out to the tree’s drip line and kept at least a foot from the trunk to prevent rot. Oaks do not need rich soil, so don’t apply synthetic or organic fertilizer because most North American trees don’t need fertilizer and may even respond adversely to it. And don’t use those watering bags that only water at the base of the trunk and may promote rot

Though this species is drought tolerant, provide ample summer water, deeply and infrequently until established. During the first summer I like to water roughly every five days with about 10 gallons of water that’s applied so that it sinks in slowly. During the second and third summers, water once a week, 10-15 gallons, being sure to water out to the root zone (drip line) and beyond—root spread can be more than twice that of the crown. If severe heat and prolonged droughts appear to be stressing a young tree, provide more water. After the first few years it may do fine on its own, but do water it (deeply) if it appears to be drought stressed. Keep the area well weeded and don’t stake trees unless they are in very windy areas—they’ll grow much stronger if left unsupported. Keep in mind that soil compaction, hardscape, lawns and irrigation systems around water-sensitive oaks are a major cause of their decline in residential areasHere is more info on how to plant Oregon white oak.

Grab a partner
As with other native species, oaks will function best when grown within a habitat and community type that consists of plants that evolved together and need the same conditions. Figuring out which community occurs in your area requires a walk in a nearby natural area where species, as well as nature’s organization, can be learned. Some associate trees that might thrive with your oak include Oregon ash (Fraxinus latifolia) on moist sites, and madrone (Arbutus menziesii) on drier sites, and Pacific ponderosa pine (Pinus ponderosa subsp. Benthamiana). For shrubs, consider california hazelnut (Corylus cornuta var. californica), osoberry (Oemleria Aquilegia formosacerasiformis), serviceberry (Amelanchier alnifolia), snowberry (Symphoricarpos albus), oceanspray (Holodiscus discolor), red-twig dogwood (Cornus sericea), and tall Oregon grape (Mahonia aquifolium), depending on your location. Sword ferns (Polystichum munitum), orange or pink honeysuckle (Lonicera ciliosa or L. hispidula), fescues (Festuca spp.), and many wildflowers, including allium (Allium cernuum), camas (Camassia spp.), meadow checker mallow (Sidalcea campestris), western columbine (Aquilegia formosa, pictured right), and shooting star (Dodecathon spp.) associate in different parts of its range.

To find out which habitat type and plant communities would likely have grown in your area, check out this Ecoregional Assessment, or query your county’s soil and water conservation district or native plant society chapter. The following publications may also be helpful:
~ Georgia Basin: Garry Oak Ecosystems Recovery Team
~ Puget Trough: Prairie Landowner Guide for Western Washington 
~ Willamette Valley: A Landowner’s Guide for Restoring and Managing Oregon White Oak Habitats

 

© 2017 Eileen M. Stark

To leave a comment, click on post’s title

What Makes Leaves Change Color?

Populus tremuloides (quaking aspen)

I’ve written quite a bit about the importance of leaf “litter” on the ground, so here’s a little info on how it gets there and what conditions make for the most vibrant leaves. While it’s understandable to think that it is the cooler temperatures of the fall season that bring about color change, there are several other factors. Besides temperature, sunlight and soil moisture influence the quality of autumn leaf color. But the process that instigates the show is actually more of a chemical process brought on by less daylight.

Darkness rules

Most plants are quite sensitive to each day’s length of darkness. In early fall, when nights begin to lengthen, the cells near the joint of the leaf and stem in deciduous trees and shrubs are triggered to divide quickly. This corky layer of cells (the abscission zone) begin to block transport of essentials such as carbohydrates from the leaf to the branch, as well as the flow of minerals from roots upward to leaves.

When plants are actively growing, green chlorophyll is constantly produced in the leaves. But in autumn, when the connection between the leaf and the rest of the plant gets more and more obstructed, chlorophyll replacement slows and then stops completely. This is when autumn colors are revealed: Normally masked by chlorophyll, yellow pigments called xanthophylls and orange pigments known as carotenoids become visible when chlorophyll shuts down. Red and purple pigments come from anthocyanins which are created (in some species) from sugars within the leaf and it’s speculated that they are a defense mechanism that helps some plants fight herbivores like aphids.

Spiraea betulifolia var. lucidaAs fall moves forward, the cells in the abscission layer become drier and weaker and leaves eventually part company with the plant. Many trees and shrubs lose their leaves when they are still colorful (making for some gorgeous mulch!), while some retain the majority of their foliage through much of winter, though their leaves lose color fairly quickly. Like chlorophyll, the other pigments eventually break down in light or when frozen. The final pigments are tannins, which look brown. An example is the Oregon white oak (or Garry oak), which appears golden for just a few days before turning brown.

Recipe for color

Low temps (but above freezing) and ample sunlight following formation of the abscission layer cause quick destruction of chlorophyll and promote the formation of bright colors in some species. Stress from drought during the growing season can sometimes trigger early formation of the abscission layer, resulting in leaf drop before they have a chance to develop fall coloration, so a growing season with ample moisture that is followed by somewhat dry, warm, sunny, calm fall days with cool, frost-free nights provides the best recipe for bright fall colors.

Plant natives!

Besides offering the most ecological benefits, some native species grown in their native ground offer wonderful fall color that rivals that of nonnative plants. Here in the Pacific Northwest, some of the most vibrantly colored leaves occur on natives such as paper birch, black hawthorn, Oregon ash, quaking aspen (pictured, top), golden currant, vine maple, serviceberry, and red-twig dogwood. Enjoy!

 

© 2015 Eileen M. Stark

To leave a comment, click on post’s title

Best Early Spring-Flowering Shrubs for Pacific Northwest Pollinators

Ribes sanguineum

Plan ahead for hungry native pollinators who need early-flowering plants like red-flowering currant to survive.

 

April showers may bring May flowers, but what about providing forage for hungry pollinators that need food earlier in the year? To provide large amounts of nectar and pollen in late winter and early spring for emerging bees as well as hummingbirds and other pollinators, to help you endure the gray winter skies and store carbon, and to get the most bang from your buck, add early-flowering native shrubs to your garden. Get new shrubs in the ground preferably in autumn—so the plants benefit from winter rains, and to ensure that you have the early part of a continuous succession of flowers covered.

Here are five early-flowering shrubs (plus one shrubby tree that’s pollinated by wind), listed in order of size from largest to smallest, that naturally occur in large areas of the Pacific Northwest region west of the Cascades. They grow in sun to partial shade, are fairly easy to find at native plant nurseries (as well as nurseries that don’t focus on natives), and are quite easy to grow, provided they are kept adequately moist until they are established (2 to 5 years). All would do well planted in wide, unpruned hedgerows. When choosing any shrub, note its eventual width to be sure you have enough space for it to stretch its limbs and attain its natural form at maturity—and to eliminate future hack jobs by a pruner. 

Buy plants that are responsibly propagated from source material that originated as close as possible to your site. Using such “local genotypes” helps ensure that you get plants that are well adapted to your area and that genetic diversity—which helps plants (and animals) adapt to changing conditions—is preserved. Ask growers and nurseries about their sources.

Salix scoulerianaScouler’s willow (Salix scouleriana): A fast-growing deciduous shrub or small tree. Flowers are soft catkins, larger than horticultural “pussy willows,” and appear in early to mid-spring. Male and female flowers are on different plants, so grow both for seeds. Scouler willow is a larval host plant for several butterfly species. Does not tolerate full shade. Prefers moist soil. 20-30 feet tall by 10-15 feet wide at maturity. 

 

Oemleria cerasiformis

 

Osoberry (Oemleria cerasiformis): A large, arching deciduous shrub or small tree that blooms prolifically in late winter as leaves emerge. Tolerates clay soil well, but does best with some shade (nature places it in the dappled shade of tall trees). Plants are either male or female, so plant several to produce the fruit that birds need. 12-18 feet by 10-14 feet at maturity.

Amelanchier alnifolia

 

 

Serviceberry (Amelanchier alnifolia): A versatile, multibranched shrub with lovely white, fragrant flowers in mid to late spring. Bluish-green leaves turn gold to reddish in autumn. Larval host plant for several butterfly species. Needs well-drained soil with adequate organic matter. Tolerates full sun in cool areas. Doesn’t like competition, so plant other shrubs and perennials at least several feet away. 8-18 feet tall by 6-10 feet wide at maturity.


Red-flowering currant (Ribes sanguineum)
: An upright, deciduous shrub with nearly year-round appeal. Gorgeous, pendulous, lightly fragrant flower clusters (pictured, top) that bloom in early spring are followed by powder-blue berries. Leaves turn golden in late autumn. Larval host plant for butterfly larvae. Controls erosion. Can’t handle excessively wet soils, so be sure soil drains well and plant it away from rain gardens and other drainage areas.  7-10 feet tall by 6-9 feet wide at maturity. More info in this post


Mahonia aquifoliumTall Oregon grape (Mahonia aquifolium)
: A handsome, multitalented evergreen shrub with an upright growth habit. Bursts into flower brilliantly in early to mid-spring, for a long period. Tolerates acidic soils. Has somewhat prickly evergreen leaves, so site it where it won’t be brushed against frequently. 5-9 feet tall by 3-6 feet wide. Will spread slowly. More info in this post.

 

The earliest winter bloomer is the handsome beaked hazelnut (Corylus cornuta var. californica), a beautifully textured, large multistemmed woodland shrub or small tree that grows to 10-20 feet tall by 10-20 feet wide. It is pollinated by wind, not animals. More info here.

After planting
Add a few inches of organic matter as mulch around the shrub (but keep away from trunk) to insulate, keep weeds down, and add nutrients. Fallen leaves work well, as does weed-free compost. If you use wood chips, make sure they aren’t finely ground and/or fresh, and don’t dig them into soil—under-composted chips and bark can deplete soil of nitrogen during breakdown. Later on, simply allow fallen leaves to remain on soil to provide habitat and nutrients.

All of these shrubs are drought tolerant when established (although Scouler willow does best with supplemental summer water), but they will appreciate some irrigation in very hot situations. They should need little to no pruning if they’ve been sited to allow room for their growth.

If you already grow any of these shrubs, I’d love to hear what wild species you’ve seen attracted to them. Or how much they brighten your garden on drab winter days?


© 2015 Eileen M. Stark

To leave a comment, click on post’s title

 

 

 

New Study: Non-native Plants Reduce Insect Diversity

Acer circinatum (vine maple)

Natives like vine maple (Acer circinatum), surpass nonnatives for restoring biodiversity


As if we need further proof
, a new study published recently in Ecology Letters demonstrates that native plants are much better at supporting local insects than nonnative species, and that nonnative plants are exacerbating biodiversity loss with their inability to support many insect herbivores.

The researchers planted test gardens with both native and nonnative tree species and collected data over a three-year period. They measured the insect herbivore species and communities that were using the plants, and compared native trees to nonnative trees of two types: Those with close native relatives in the region and those that had no close native relatives.

They found that nonnative trees with a native relative (in the PNW, think nonnative scarlet oak, which is related to the native Garry oak) host and support fewer species of insects than the native counterpart, and that few of them were unique to that species of tree. The result was even more striking with nonnative trees that had no native relative in the region (such as golden chain tree, a European species).

The study also found that young insects, which are most supportive of an ecosystem, were found on the native trees. Adult insects, on the other hand, may be found on plants, but for various reasons—to rest, to warm themselves, breed, etc.

Essentially, when the diversity of insect herbivores—which are the basis of the food web—plummet, so too do all the species that rely on them for food. If you’re not particularly fond of insects, think of them as baby food: In spring and early summer, when insect eggs are hatching and larvae are feeding, most birds are wholly dependent on insects to feed to their young, as well as to keep their own strength up. And most other wild species rely on insect herbivores in one way or another. Even predators like bobcats need native plants, since they feed on wildlife that need insects and/or native plants to survive. 

So, this is more evidence that natives are the answer for restoring biodiversity, while most nonnatives are problematic. When selecting plant material—even in an urban area—choose plants that help the environment and its community members. Go for the native oaks, pines, maples, willows, etc., with their plethora of insects. There’s almost always a native option!

 

© 2015 Eileen M. Stark

To leave a comment click on post’s title

 

Northwest Native Pollinator Plants for Late Summer to Fall

Late season pollinator plants

Scientists know that bees are dying for a variety of reasons—pesticides, habitat destruction, drought, climate change, nutrition deficit, air pollution, and so on, which makes us the obvious perpetrator. We can help give back to them (and other pollinators) by growing flowering native plants in our gardens (as well as noninvasive exotics that step in when a native plant isn’t available or feasible), with consecutive blooms from early spring till fall. To provide for many different types of pollinators—from long and short-tongued bumblebees to syrphid flies, hummingbirds, and beetles—offer a variety of flower shapes, colors, and sizes, with smaller plants in groups of at least three of the same species (like a big, obvious “Eat Here” sign). Fragrance is also important for attracting insects to flowers and guiding them to food within the flower, and aiding an insect’s ability to efficiently learn particular food sources.

Below are some native perennials and one shrub that offer food for pollinators from mid or late summer to fall in the Pacific Northwest, west of the Cascades. There are more candidates, but I chose these species because they naturally occur in fairly large parts of the region, are generally easy to grow, and are not too hard to find at nurseries (although you will likely have to call around for availability). I’ve listed them alphabetically with some very basic care guidelines. It’s best to plant them in the fall, just before or as the rain returns.

As always, plan ahead and choose species that fit your light, moisture, and soil conditions, but also choose those that are appropriate to the natural landscape—that is, look to nearby natural areas, and add flora that would likely have grown in your area historically, if possible. You can also check a species’ natural range (to county level) here, or check with your local native plant society chapter or county soil and water conservation district. No fertilizer is necessary and please don’t use any pesticides. Keep them adequately hydrated—by watering deeply and infrequently to promote deep roots—until they’re established (2 to 5 years). Enjoy!

Achillea millefolium var. occidentalis (Yarrow): Perennial. 1-3 feet tall x 1-3 feet wide. Sun to part sun. Not fussy about soil; moist or dry. Spreads by rhizomes or seed. Flat-topped clusters of white, fragrant flowers (pictured below) bloom through late summer. (Not to be confused with the Eurasian Achillea millefolium var. millefolium). Achillea millefolium var. occidentalis

Anaphalis margaritacea (Pearly everlasting): Perennial. 1-3 feet tall x 1-2 feet wide. Sun to part shade. Likes moist soil with good drainage, but can tolerate drought once established. Pure white flowers are often used in dried flower arrangements. Besides providing nectar, it is a host plant for painted lady and skipper butterflies.

Baccharis pilularis (Coyotebush): Evergreen or semi-evergreen shrub. 5-8 feet tall x 6-8 feet wide. Sun to part shade. Tolerates poor soils (but needs good drainage) and is drought tolerant. Flowers aren’t showy and are borne on separate male and female plants (male flowers creamy white; female pale green). Excellent wildlife habitat plant but is deer resistant.

048_Campanula rotundiflora sRGBCampanula rotundifolia (common harebell): Perennial. 1-2 feet tall x 1-2 feet wide. Sun to part shade. Moist to dry, well-drained soil, preferably with a good amount of organic matter. Spreads slowly by rhizomes or seed. Bell-shaped, bluish violet flowers typically bloom through late summer. (pictured left)

Gaillardia aristata (blanketflower): Perennial (short-lived). 1-3 feet tall x 1-3 feet wide. Sun to light shade. Tolerates a variety of well-drained soils; drought tolerant when established. Spreads by seed. Colorful yellow and reddish orange flowers bloom well into fall, especially when dead-headed. Deer resistant.

Solidago canadensis (Goldenrod): Perennial. 2-4 feet tall x 2-3 feet wide. Sun to part shade. Solidago canadensisTolerates wide range of soils; prefers moisture but tolerates drought when established. Spreads by rhizomes or seed. Bright gold, fragrant inflorescences typically bloom well into fall. (pictured right)

Symphyotrichum subspicatum (Douglas aster): Perennial. 2-3 feet tall x 2-3 feet wide. Sun to part shade. Does best in moist soil that is rich in organic matter. Spreads slowly by rhizomes and seed. Lavender-blue daisylike flowers bloom from mid summer until mid fall. (pictured below)

 

 

Douglas aster

 

 

© 2015 Eileen M. Stark

To leave a comment, click on blog’s title

Drought’s No Fun for Wildlife, Either

Bushtits at gradually sloping birdbath

Here in the Pacific Northwest (as well as the interior Northwest, northern Rockies and northern California) we’re experiencing a hot and early summer. Nearly everything’s been premature—most trees leafed out several weeks before they typically do and herbaceous plants popped up ahead of time; those that flower were more than punctual. My raspberries and thimbleberries were three weeks early, and I’m picking apples now that usually ripen several weeks from now. Portland set a record for a dry June and will likely break another this week for the highest number of consecutive days over 90˚.

The winter was pleasantly mild and precipitation was paltry: Snowpack in Oregon was 11% of normal and Washington’s was 16%. If the current drought and dry heat makes us thirsty, we’re not alone. Nearly all of life’s processes require water in one form or another—it’s essential for everything from small insects to birds to bobcats. Of course, areas further south are much more drought stricken, with wildlife emaciated and dehydrated. Some say it will only worsen, due to climate change.IMG_6764

Drought causes many deadly, far-reaching effects for wildlife, including less food and cover, increased vulnerability to predators and diseases, competition with others of their kind, and more conflicts with people as they desperately search for food and water outside their normal range. Although some animals obtain moisture from their prey, they still depend on water in the environment to provide for those they need to eat. Tiny creatures may find enough in dew droplets, but many species require additional water to survive. Birds, for example, need water to drink of course, but also to bathe in to help keep their feathers clean and waterproof—essential for insulation and flight.

Dehydration is dangerous for everyone. If you want to help wild visitors in your yard, below are some quick, easy options. Artificial ponds can be a wonderful addition to larger gardens, but they aren’t quick and easy, so they’re not included here.

Scrub jay takes a drinkBirdbaths: Birdbaths that slope gradually are best because all sizes of visitors can wade in to a safe and comfortable depth. If you already have one that has steep sides, place some flat rocks on one side to create a shallow area. Site birdbaths in open areas, at least 10 feet from any hiding places were domesticated predators could lurk. Use hanging birdbaths whenever possible if predation is a problem in your yard. And keep them as clean as possible: Replace the water every day or two (this will also keep mosquitoes from breeding) and give them a good scrubbing every few weeks, but don’t use bleach.

Mud puddles: Most butterflies and moths (Lepidoptera), as well as some types of insects and birds, require moist soil or sand to obtain essential nutrients. Lepidoptera, for example, “sip” earthy cocktails that contain minerals such as salts which are essential for reproduction. Just the other day I saw a Western tiger swallowtail pressing his proboscis into the recently irrigated soil in a community garden plot. Male Lepidoptera give their significant others an extra little gift of minerals while mating which ensures that the largest number of eggs develop. In nature, this “mud puddling,” as it is called, is done at the edges of streams and other moist places. You can mimic this habitat by filling a large ceramic bowl with sand and burying it part way in your garden. Mix in some salt for males and place some round rocks (for landing and basking) around the edges. And don’t be too quick to pick up moist fallen fruit (like figs, should you have them)—some Lepidoptera species can’t resist such fermenting treats. More on feeding butterflies in a future post!

Moist gravel for bugsPlates of moist gravel: Beneficial insects and other small arthropods will sometimes come to shallow birdbaths, but ground dwellers—like beetles—will appreciate a plate or pie pan filled with clean pebbles or gravel and water, and placed on the ground out of hot sunlight. Just be sure the water doesn’t rise above the gravel so that no one drowns.

It looks like we may be in for a very hot summer throughout most of the Northwest. Providing water in your garden will attract wild visitors and maybe even save lives.

 

© 2015 Eileen M. Stark

To leave a comment, click on blog’s title

Attract Butterflies with Northwest Native Plants and More

Red admiral butterfly

It’s so delightful when a lovely butterfly (is there any other kind?) floats into our yard. Each year, as soon as June rolls around, I catch glimpses of gorgeous Western tiger swallowtails and orangey Painted ladies flitting here and there, as well as the occasional Mourning Cloak in the vicinity of our octogenarian American elm tree, one of its host plants. This summer I’ve noticed, for the first time, a Red Admiral butterfly (Vanessa atalanta) gliding in now and then. This species is reportedly rather territorial and will stay in one area for days or even weeks, so I hope to see her again. She’s apparently attracted to the heat radiating from the rocks on the west-facing side of our veggie garden, as well as the white trellis that supports our cucumber plants, and this morning she surprised me by landing on the white shirt I was wearing. She was near some native wallflower (Erysimum capitatum) plants growing nearby, but I’m not certain she used them.

Red admirals aren’t very fussy about habitat, but for food they prefer sap from trees, fermented fruit, and bird droppings—yes, you read that right—from which they obtain nutrients, such as amino acids and salts that are necessary physiologically, behaviorally, and ecologically. Many butterfly species and some other insects consume droppings as well, and don’t get me started on the fascinating spider that masquerades as bird poop to hide from predators. Flower nectar is actually a second choice for red admirals, who only forage at flowers—such as aster, milkweed, penstemon, fireweed and wallflower—when sap, fruit, and droppings aren’t available.

Beyond food

But as you may know, butterflies need much more than food to survive and reproduce; they need to be protected during winter and also need “host” plants on which they can lay their eggs. These can’t be just any old plants; they need to be the kind that their larvae can feed on (as their ancestors have done for millennia) as they grow into pupa (chrysalis), that awkward metamorphic stage before adulthood. Some butterflies aren’t terribly picky and may be able to lay their eggs on four or five different plant species, but others, like monarchs and red admirals, can use only one species.

My butterfly reference tells me that red admirals lay their eggs only on plants of the nettle family (Urtica spp.), something I’ve never grown. Uh-oh. As I began pondering where the heck in my yard I could grow it, I suddenly remembered a wonderful nettle soup that I had at an equally wonderful villa on the west coast of Sweden some years back. It’s not only edible; it’s one of those “super foods” that are extremely rich in nutrients and purportedly very cleansing.

So now I’m on a mission to grow some native stinging nettle (Urtica dioica)—maybe a bit for us to eat, but mostly for the butterflies. It turns out that the Satyr comma butterfly also uses only nettle as a host plant, although they are reportedly rather rare in parts of their range and it’s highly unlikely I’ll ever see one in my urban yard. I prefer to grow it myself, so that the wild stuff in wilder places can be left to the butterflies. But first I’ll have to carefully figure out where to plant it … and buy some stinger-proof gloves. Or maybe I should just stick with providing for species that don’t need such outrageously prickly plants.

© 2015 Eileen M. Stark

To leave a comment, click on blog’s title

10 Great Northwest Native Pollinator Plants for Summer

Bombus vosnesenskii

In honor of National Pollinator Week, let’s zoom in on the bees and other hard-working pollinators whose lives are dictated by weather, season, and the availability of food, nesting habitat, and overwintering sites.

Nature has provided pollinators with unique ways of gathering nutritious pollen and nectar for their young, and they’re enthralling to watch. But bees and other pollinators are in terrible trouble worldwide due to our presence and actions. We can give back to them by growing flowering native plants in our gardens (as well as noninvasive exotics that are especially attractive to bees, like lavender and sunflower) with consecutive blooms from early spring till fall. But don’t forget to provide for them during all their life stages — not just their adult stage — by leaving the leaves, dead wood, and spent flower stalks to make sure they can get through the winter and have habitat to raise their young. And, no pesticides whatsoever!

If you’ve already included some native plants in your yard, you’re well on your way to providing for a wide variety of wildlife. Offering a variety of flower shapes, colors, and sizes, with smaller plants in groups of at least three of the same species (like a big, obvious “Eat” sign) will help provide for many different types of pollinators—from long and short-tongued bumblebees and syrphid flies to hummingbirdsbeetles and thrips. Below are some Pacific Northwest native herbaceous perennials and shrubs that offer food for pollinators from early to mid or late summer in the Pacific Northwest, west of the Cascades.

The list is just a sampling (read about others in my book or within my blog’s PNW native plant profiles), and the species were chosen because they naturally occur in large parts of the region, are generally easy to grow, aren’t too hard to find at native plant nurseries (although you may need to call around for availability), and attract their fair share of native pollinators. I’ve listed them alphabetically with some basic care guidelines. Fall planting is best, as winter rains begin. (If you’re reading this in springtime, don’t worry—you can plant now, but you’ll definitely need to keep an eye on their water needs during the first couple of summers, at the very least.)

As always, plan ahead and choose plants that fit your light, moisture, and soil conditions, but also choose those that are appropriate to the natural landscape—that is, look to nearby natural areas and add flora that likely would have grown in your area historically. You can also search for a species’ natural range (to county level) here, or check with your local native plant society chapter or county soil & water conservation district. Growing them with associated species that evolved alongside them in nature will help them thrive. No fertilizer is necessary (although a one-time addition of compost such as leaf compost to the soil will add some nutrients and improve soil structure), but do keep them adequately hydrated until they’re established (2 to 5 years). Enjoy!

◊ Achillea millefollium var. occidentals (Western yarrow): Perennial. 1-3 feet tall x 1-3 feet wide. Sun to part sun. Not fussy about soil; moist or dry (will spread faster with more moisture). Spreads by rhizomes and seed. Flat-topped clusters of white, fragrant flowers bloom nearly all summer. (Not to be confused with the Eurasian Achillea millefolium var. millefolium).

Asclepias speciosa or A. fascicularis or A. cordifolia (milkweed) : Perennial. 2-3 feet tall x 2-3 feet wide. Sun to part shade. Moist, well-drained soil, but can handle some drought when established. Rounded clusters of soft pink, fragrant flowers. Check out the Xerces Society’s info on milkweed of Oregon and of Washington. (A. fascicularis is pictured, right)Asclepias fascicularis

Campanula rotundifolia (common harebell): Perennial. 1-2 feet tall x 1-2 feet wide. Sun to part sun. Well-drained, moist to dryish soil. Spreads slowly by rhizomes or seed. Bell shaped, violet-blue blossoms.

Ceanothus velutinus (snowbrush): Fast growing evergreen shrub. 6-12 feet tall x 6-12 feet wide. Sun to part shade (intolerant of full shade). Rich or poor soil; very drought tolerant. Dense pyramidal clusters of tiny, fragrant white flowers. Occurs mainly at mid to high elevations; check natural occurrence, to county level, here.

Erigeron speciosus (showy fleabane): Perennial. 2 feet tall x 2 feet wide. Sun to part shade. Well-drained, moist to dry soil. Lovely and abundant daisy-like, bluish lavender blossoms go nearly all summer. (pictured below)

Erigeron speciosus

Holodiscus discolor (oceanspray, aka cream bush): Fast growing, very attractive deciduous shrub. 8-16 feet tall x 8-12 feet wide (larger on protected sites, smaller on windy, harsh sites). Sun to part shade (intolerant of full shade). Not fussy about soil; moist or dry. Drought tolerant when established. Lavish, feathery plumes of creamy-white flowers in early to mid-summer. Nice for hedgerows. Controls erosion.

 

Lupinus polyphyllus (large-leaved lupine): Perennial. 2-4 feet tall x 2-4 feet wide. Sun to part shade (intolerant of full shade). Moist soil preferred but will tolerate short dry periods. Tall spikes of bluish-purple, pea-like flowers. (pictured, right) Lupinus polyphyllus

Sedum spathulifolium or S. oreganum (stonecrop): Perennial. 1-4 inches tall; spreads slowly. Sun to part sun (afternoon shade is welcome). Well-draining, gritty, lean soil. Bright yellow star-shaped flowers. Nice for rock gardens. Not a ground cover for foot traffic. (S. spathulifolium pictured below)

Symphoricarpos albus (snowberry): Deciduous shrub. 4-6 feet tall x 4-6 feet wide. Sun to mostly shade. Moist or dry soils; tolerates heavy soils. Drought tolerant when established. Tiny, paired, pink, bell-shaped flowers. Eventually forms a thicket. Controls erosion.

Tiaralla trifoliata (foam flower): Perennial. 8-14 inches tall x 1-14 inches wide. Shade to part shade. Spreads very slowly by rhizomes or seed. Needs moist, well-draining soil rich in organic matter. Panicles of white to pale pink flowers bloom from late spring to late summer. More details here.

Sedum spathulifolium with syrphid fly

 

Copyright 2015 Eileen M. Stark

To leave a comment, click on blog’s title

 

Pacific Northwest Native Plant Profile: Bear Grass (Xerophyllum tenax)

X. tenax up close

When I mention bear grass, people familiar with the plant usually light up as if its creamy blossoms were right in front of their face. I’m lucky to have one in full bloom right now in my backyard (yes, just one—I have more, but they’re too young to bloom). Bear grass typically takes many years to flower, so I am savoring this one as much as possible. En masse in nature they are quite a vision, and even when not in bloom they make a lovely, luminescent, soil-stabilizing ground cover. But don’t you dare even think about taking even one plant from the wild.

X. tenax on Larch MountainBear grass, a common name for Xerophyllum tenax, comes from observations that bears like to eat the young fleshy stems, and Grizzly bears reportedly have been known to use bear grass leaves in winter dens during hibernation. It’s a popular plant for many other species who use it for food or cover: from bees and beetles to rodents and elk. Though not a true grass, other common names include Indian basket grass, deer grass, elk grass, and soap grass (not sure where the latter came from!).

The botanical name comes from the Greek xero (dry) and phyllon (leaf), and the Latin tenax (tough or tenacious). It’s an evergreen member of the corn lily family (Melanthiaceae), a group of flowering perennial herbs native to the northern hemisphere. I’ve included bear grass in my book even though it’s not terribly easy to grow. When it does establish, it spreads (very slowly) by forming offsets and by seed.

Long, skinny, and rather wiry leaves arise from the rhizome in clumps. Their edges are rough and finely serrated and it’s their toughness that helps the plant minimize water loss during periods of drought, as well as insulate it from frost.Xerophyllum tenax (foliage)

Flowers open from the bottom up, so that the inflorescence, which ranges in height from two to five feet, takes on many different shapes as it matures. Flower fragrance varies; one study reported that one-fifth of bear grass flowers in their sample had a sweet smell like cultivated lilacs, while the others smelled “musty-acrid.” The one now blooming in my yard is, thankfully, the former, although not as sweet as lilacs.

After the blossoms fade away the flowering plant usually dies, but the long-lived rhizome lives on and offsets bloom when they are mature enough. Its fruits are three-lobed dry capsules, about ¼ inch in length, that contain 6 or 7 beige seeds, which may be eaten by migratory birds prior to fall flights. They may be sown in late summer, fall or winter and need at least 12 weeks of cold stratification.

How it grows
Bear grass grows naturally in a variety of conditions—in cool, moist meadows and bogs, and mixed-coniferous forest openings in most of western Washington and Oregon, coastal areas of northern and central California, northern Idaho, parts of British Columbia and Montana, and a snippet of Wyoming. I’ve come X. tenaxacross it on hikes in the Oregon Cascades near trees such as Douglas-fir, Western hemlock, or mountain ash, and among smaller species like huckleberry, bunchberry, fawn lily, star-flowered false solomon’s seal, inside-out flower, foamflower, and woodland strawberry.

It’s often found growing on slopes (in soil that’s not particularly rich) that are moist during winter and spring, but fast draining. I grow mine on a south-facing slight slope, in partial shade. The soil’s a bit rocky and has been amended with leaf compost. Large rocks nearby help keep roots cool and moist. During very warm and dry periods I give supplemental water, especially when plants are young.

Conservation

For centuries, Native Americans valued bear grass and used it sustainably for basketry and decoration, and ate the roasted roots. Today bear grass is having a very tough time surviving with our myriad modern threats: Logging and other habitat loss, introduced forest pathogens and insects that affect associated species, fire suppression, and the floral industry that recklessly collects it for lucrative commerce (much of it is exported). If you know of a florist who uses bear grass, ask them where they got it and explain the disastrous ramifications if necessary. Never take this plant (or any other native plant) from the wild.

Bear grass is a fire resistant species that is often the first plant to grow after a fire. Like many other native plants, it needs periodic burns for strong new growth. Following a light fire that increases light, growing space, and soil nutrients, bear grass sprouts from its rhizomes, which lie just under the soil’s surface. But when fires are suppressed—often due to timber industry management—the result is fewer but much more intense fires that kill rhizomes, making it impossible for the plants to come back.

X. tenax closeWildlife value
All of these perils affect not only the species directly, but also its pollinators—nearly 30 species of flies, beetles, and bees, and possibly some butterflies, moths, and wasps. Besides pollinators, bear grass also provides food for rodents, deer and elk, and even mountain goats at higher elevations, as well as other habitat components, such as nesting material for birds, mammals, and insects—all of which are essential, interconnected ecosystem members. More info on conservation here.

Beargrass’s only close relative, X. asphodeloides, grows in the southeastern part of the U.S.

 

© 2015 Eileen M. Stark

To leave a comment, click on blog’s title

 

Anna’s Hummingbird Babies: From Eggs to Empty Nest

Anna's hummingbird babies, around Day 19

As I wrote last month, we were extremely fortunate to have a little Anna’s hummingbird build her tiny nest — smaller than an espresso cup — in a rhododendron shrub, just steps from a window. In February, binoculars and camera in hand, we watched and photographed as she finished the intricately woven and structurally sound nest, anchored to a branch with strong and stretchy spider silk, lovingly lined with fur, and carefully camouflaged with lichen. On February 20 it appeared that her beautiful nest was complete and incubation of two navy bean-sized eggs had begun. Mama hummingbirds typically sit on their eggs for 14 to 19 days.

About 18 days later, I saw her perched on the edge of her nest, apparently regurgitating a slurry of nectar from nearby native currant flowers and partially digested insects or spiders (high in protein) into her babies. I couldn’t actually see them at that point since the nest was about eight feet off the ground and they were so small. At this early stage she would feed both nestlings (hummingbirds almost always have two), fly off, and come back with more food within 60 seconds or so. After she and the nestlings had been fed adequately, she’d return and stay on the nest awhile since they were nearly naked and in dire need of warmth.

Later that week we saw her offspring for the first time, with their dinosauric heads and just the start of future feathers. Even at this age, still completely helpless and blind, their instincts are strong: They are able to keep their nest clean by wriggling their little bottoms toward the edge of the nest and squirting their poop outside of it.

Anna's hummingbird babies, around Day 7

Anna's hummingbird and one of her babies, around Day 7

 

Later, about ten days after hatching and when the nestlings’ barbs began to look like feathers, Mom no longer stayed on the nest — during the day, anyway — most likely because her babies now had the ability to regulate their own body temperature. I imagine she was also not too keen on having her underside poked by pointy bills!

Ann's hummingbird and her babies, around Day 12

Anna's hummingbird babies, around Day 13

 

We continued to watch her feed them, first pumping food up into her throat, then aiming her long bill into their gaping orange mouths and straight down their throats. She resembled a sewing machine needle as she repetitively pushed food into them, never spilling a drop. Ouch!

Anna's hummingbird feeding her babies, around Day 18

 

References state that Anna’s hummingbirds fledge within 18 to 28 days after hatching. On the morning of what I believe was Day 23, I watched one of them sit on the edge of the nest and flap his/her wings with such gusto that I thought the time had come. A rainstorm came and went, but they remained in the nest, sitting with their bills pointed directly upwards, nearly vertical; occasionally they’d shake off raindrops but maintained their pose. Brave and undaunted, they also endured fairly heavy wind and a short, but pounding, hail storm.

Anna's hummingbird babies, around Day 22

 

On what was probably Day 24, I saw one of them, for the first time, venture out of the nest and onto the branch right next to the nest. Even though the nest was designed to stretch as the nestlings grew, it was getting tight. Surely they are leaving now, I thought!

Anna's hummingbirds babies, around Day 23

 

They left the nest on Day 25. When they took off I was, disappointingly, in the shower at the time. Just before they left I noticed them preening their breast feathers meticulously, no doubt to make themselves more aerodynamic and ready themselves for life on the wing.

Anna's hummingbird babies, around Day 23

 

Mom feeds them for a week or so post fledging, so they are on their own by now. I still look for them in the garden and high in the trees, but it’s hard to say who’s who—fledglings’ bills and tails are shorter than adults’ and they have no red on their throats, but they may almost resemble female adults by now. Reportedly, the siblings may stay together until autumn, and then they separate for good. Have a good life, sweet babies!

Anna's hummingbird babies, around Day 20

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

UPDATE: March 29, 2017
It’s been two years since I wrote the above post. This year a female Anna has again built a nest in the same shrub, although the nest is harder to see as it’s a little higher up and has more leaves partially blocking our view. I’ve watched the nest as best I can, and judging by what looked like pumping (feeding) movements, I believe at least one of her babies hatched on March 6. Photographing them has been very difficult due to the nest position, as well as the plague of unusually cold, wet weather. In the early part of March I watched her as she searched for insects everywhere in the yard and she spent more time away from her nestlings than the mom two years ago did. This made me wonder if she might be having trouble finding protein (in the form of little insects and spiders), which are essential for the babies’ development, as well as her health. Sugar water or flower nectar alone is completely inadequate.

After about 10 days had passed, I could just barely make out a beak in the nest reaching skyward toward Mama, ready with food. I never saw more than one mouth at a time, which I thought to be a little odd, and wondered if both eggs had hatched. At Day 12 my husband, Rick, managed to get some photos of Anna feeding them, and there is evidence of two mouths, although one is in poor focus and looks like it may not be fully open, even though Mama looked ready to deliver. I was relieved to know that there were two hatchlings, but I continued to see her feeding only one at a time; this worried me because two years ago both of her young were highly visible during each feeding (as the photos above show).

A week later, on March 25, Rick was again photographing the nest and grew concerned when he repeatedly saw her feeding only one baby. With his cell phone taped to a stick, he held it horizontally above the nest while Mom was away and managed to get a short video of the nest. I’m very sad to report that there was only one baby present; the other must have died from lack of protein due to the shortage of insects during the non-stop cold weather. I do not know if the mother, sensing that one was weak and knowing she couldn’t feed them both adequately, chose to stop feeding the weak one so that one would survive, or if the baby was too weak to gape and receive food and eventually died. It’s also slightly possible that the baby was stunted from the beginning (possibly due to too small a yolk). It’s impossible to say for sure, but regardless, it was heartbreaking for this animal lover to realize that someone starved to death right outside her house. I do accept that nature can be harsh—especially during the winter—and I’m glad that the baby didn’t die due to direct human disturbance, but this is just another reason to grow native plants that supply drastically more insects than non-native species.

As I write this, the brave little baby that’s endured the cold still sits alone in the tiny nest that should be filled with a brother or sister. Mom no longer stays on the nest, but she still feeds him/her about every 20-30 minutes. Waiting is the hardest part … waiting for the day that s/he feels strong enough to take to the air and discover the world. I hope I get to see that flight, and I hope it’s on a warm, sunny day.

The baby fledged the very next day, which was a fairly warm, dry one. The following day, curiosity got the best of us. Using a ladder, we inspected the abandoned nest since our nosing around wouldn’t distress anyone. Sure enough, there—at the bottom of the little nursery—was the baby who had died, a dried up little body barely an inch long. Since then I’ve noticed a smallish single hummer in my yard on occasion, and once, while I was walking around the back yard with my little cat in my arms, we stopped to watch this particular bird feeding at blueberry blossoms. S/he grew very interested and circled around us, just 18 inches away from our faces! 

Anna’s hummingbirds typically have 2 or 3 broods per year, and there is another Anna’s hummingbird nest now in a neighbor’s small tree close to a stairway that leads to our back yard. I can’t be sure, but I think it is the mama who nested in our yard, doing her best to raise another couple of healthy chicks.   —ES

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

ANOTHER UPDATE: February 18, 2018
New nest! Maybe I ought to just write a fresh post—this seems to be turning into a hummingbird diary!

It’s one year later and the new nest is in my neighbor’s magnolia tree just above their fence on the property line. Rick noticed it on February 10 and thought she might still be constructing it, but on closer inspection it appeared to be finished. The next day, when Mom was off feeding, he put his phone on a stick to take a short video above the nest, and there they were: Two gleaming white eggs that resemble tiny mint candies. Perhaps the mild winter weather we’d been experiencing (with daytime temperatures around 60ºF!) encouraged this early endeavor, but Anna’s often nest very early in California, their historic home.

There had been a nest in the same tree the previous summer, but it was very difficult to view as the tree was fully leafed out. This new nest is in the open due to leaflessness and proximity (near the end of a branch, just above our driveway and recycling bins), so we’ve got a good view. But the sight is bittersweet right now (Feb. 18): Though magnolia flower buds are developing, they provide absolutely no protection for Mom and her nest. Cold, wintery weather is back and I imagine she’s fairly miserable. But I have to remind myself that she’s a tough, stoic little bird, she has the ability to go into torpor at night to conserve heat, and her eggs have not yet hatched. I’m hoping they will stay inside their little life support systems until later this week, when the temperatures will be a bit higher and insects will likely be easier for Mom to find.

February 19: She made it through a cold, snowy night and she’s still on the eggs. The red-flowering currant shrubs haven’t started blooming, so my sugar water feeders are well-stocked and are put outside soon after sunrise (to prevent freezing). Since we don’t know when the eggs were laid, they could hatch anytime between now and the end of the month.

Anna snow

One snowy morning …

 

February 20: Watching from my driveway, I now see her feeding someone, so at least one has hatched. But we’re in the middle of a winter storm that’s brought snow, and temps that will dip into the 20s tonight. I worry because insects and itsy-bitsy spiders are not plentiful when it’s so cold and the most common cause of nestling mortality is lack of protein (as we painfully learned last year). Hopefully Mom will persevere and be able to get both of them fat and sassy. Will keep you posted!

February 23: The nestlings are now at Day 3, and as far as I can tell, they’re doing well. Mom is definitely away from the nest longer than the first time I watched a hummer nest (as much as 7 minutes), but she comes back every couple of minutes during her forages to make sure no predators are near the nest. Standing on a ladder, I can now partially see the babies’ heads as they are fed.
Day 3

 

 
 

March 1: Sadly, my fear has been realized: One of the babies has died. For the past couple of days I’d only been able to see her feed one nestling; yesterday we took a video with a phone taped to a stick and it’s clear that there is now just one alive. Sigh. Anna’s hummingbirds’ historical range is from Baja to San Francisco but they’ve expanded their range north reportedly due to artificial feeders and the planting of nonnatives that bloom when natives have finished. Unfortunately the expansion sometimes has deadly consequences.

The remaining baby looks okay. It’s still quite cold but will warm up a bit soon. The red-flowering currant blossoms should be opening any day now and insects should be easier to find.

March 7: It’s warmed up a bit and the baby is definitely growing. Today his/her eyes are open! Though it’s not very warm, Mom is staying off the nest during the day, but she’s on at night since it’s so cold and the little one hasn’t a sibling to snuggle with.  Day 14 or 15

 

March 8: Today is very windy and rainy but Mom is on the nest most of the time. This weekend will be much better for Baby: warmer, dry, and sunny—just what’s needed.

March 16: Major growth is happening, but I think this baby will be on the nest for another week or more. This is Day 23, a day when many hummers are able to fledge, but since this baby had such a rough start in life, s/he will likely need much more time in the nest. The nights have been quite cold but feathers are filling in.
Day 24

March 23: Baby’s feathers are really filling in and s/he looks softer, rounder. Yesterday, after preening (or perhaps biting at parasites) Baby stretched his/her wings and was almost able to lift off the nest! At nightfall, Baby had to endure a hail storm and I think it rained through most of the night … if only s/he wasn’t stuck in that nest and could find some evergreen shelter during this nasty weather, as older birds do! I keep hoping for some warm spring weather. Even though Baby is now 30 days old, the bill and feathers need to grow more and I estimate that it will be 3 to 4 days before fledging.
Day 30
Day 30

March 25: My heart is heavy with grief today. The stoic little baby who lost his sibling and tolerated so much harsh weather is dead. I believe he died on Friday night during some nasty cold rain and hail. Saturday I saw him hunkered down in the nest to keep warm, or so I thought … while taking photos today I found him in the same position and not moving. What a terrible little life he had, unable to leave the nest during what must have been a nightmare to him. It’s also possible that something happened to Mom, but I suspect the former, since nest mortality is high. We’ll never know. I buried his tiny little body with a sprig of red-flowering currant flowers, something he would have loved. R.I.P sweet little one.

[Addendum: It is two months later, and for the first time I’ve witnessed the feeding of a baby who had apparently left the nest that day. Tiny little “peeps” were heard coming from our fig tree, but I couldn’t locate the baby until Mom swooped in to feed. After Baby was fed she left, but returned about 20 minutes later when the call for food resumed. This went on for the rest of the day, with Baby in the same tree. The same peeps were heard for many days afterwards, but in different trees. Apparently this baby’s sibling also must have died (hummers typically lay two eggs), but s/he looks strong and healthy.]


© 2018 Eileen M. Stark

 
To leave a comment, click on blog’s title

Cedar Waxwing Flocks are Back!

_MG_9122

I had planned to write a different post today, but quickly changed my mind when I caught sight of 100 to 200 cedar waxwings in my Portland yard. Last fall a huge flock was attracted to our two fig trees that were laden with ripening fruit well out of our reach. This year only one fig tree is fruiting, but there’s still a mass of succulent food for their hungry mouths. These birds also love berries and I photographed them on a red-flowering currant shrub (Ribes sanguineum) and Cascade Oregon grape (Mahonia nervosa), two of many PNW native species that support these birds. Situated near our front door, the currant shrub stops people in their tracks while it’s flowering in March, and now it’s a waxwing magnet. I watched as they eagerly picked off the berries and swallowed them whole (pictured, above).

Cedar waxwings are exquisitely beautiful birds—sleek, with silky, shiny, colorful feathers that softly blend together like watercolors. Adults have a somewhat droopy, ragged crest and a debonair black mask, outlined in white, which makes them so alluring and exciting—as in, where have you been all my life? Males have black chins and throats, whereas females’ are slightly duller and juveniles’ are streaked. Tail tips are usually yellow, wider in males and narrower in females and juveniles. In my photo you can just barely make out little reddish, waxy tips on the wing feathers, hence the common name. The function of the secretion is not fully known, although it is likely important in courtship. So dashing!

The Bohemian waxwing is similar but slightly larger, and has grayish feathers on breast and belly, instead of a soft yellow. They also have white and yellow wing patches, which cedar waxwings lack. According to Seattle Audubon Society, Bohemians are a northern species that migrate down to Washington in winter. The cedar waxwings we see are likely year round residents who travel around in search of food. Both species are monogamous and breed in open, wet areas with dead or downed wood, or in woodlands with mature conifers.

Exceptionally gregarious, these birds are often seen in large flocks, especially in autumn. You may hear them before you see them, with their very high-pitched, whistle-like trills. They mainly eat sweet fruit and even feed it to their young after a few days of insectivorous cuisine (like the majority of land birds who feed their babies insects). During breeding season waxwings need more protein and show their expert insect-catching abilities in mid-air, often over water. Insects that live on plants, like scale, are also on their menu. For medium sized, fairly stocky birds (about seven inches in length), they are quite acrobatic and can even hover in place to grab a bit of fruit when a perch isn’t handy.

Waxwings aren’t suffering from habitat loss quite as much as most species, since they can eat increasingly common exotic fruits. However, they “are vulnerable to window collisions as well as being struck by cars as the birds feed on fruiting trees along roadsides,” says the Cornell Lab of Ornithology. But native plants are best for the vast majority of wild species, so to attract waxwings to your Pacific Northwest yard, grow indigenous trees and shrubs that produce small fruits, including serviceberry (Amelanchier alnifolia), madrone (Arbutus menziesii), dogwood (Cornus spp.), western juniper (Juniperus occidentalis), black hawthorn (Crataegus douglasii), honeysuckle (Lonicera ciliosa and L. involucrata), mountain ash (Sorbus sitchensis and S. scopulina), and strawberries (Frageria spp.). Keep your eyes and ears open and look for them in parks, forest edges, open woodlands, and gardens—these beautiful birds could visit your yard, too!

Reference

© 2014 Eileen M. Stark

To leave a comment, please click on the blog’s title

Leaving Room for Wild Ones

It’s about as beautiful a fall day in Portland as you can get. I’d love to be hiking, bird watching, or sowing seeds for future plants, but it won’t be long before the book will be released. What on earth inspired me to write a book? Limelight? Prestige? Rolls of royalties? Ha!    IMG_3164 sRGB copy

What motivated me was the earth, or more precisely, my love of it. Edward O. Wilson, the eminent evolutionary biologist and the authority on ants (and my hero), coined the term “biophilia” for our innate affinity for the rest of living organisms. Besides having a bad case of it, I am unabashedly horrified at the extent to which the natural world has been plowed under by our unrelenting reorganization of nature to suit our tastes.

Urban/suburban sprawl, invasive plants, toxins, climate change, and Big Ag (by far the biggest waste of land is the 41 percent of the lower 48 states given to livestock ranchers) all contribute to our precarious environmental condition. Many remnant natural areas are isolated, degraded ecosystem fragments that struggle to support continually decreasing levels of biodiversity. We are the only species that has such an uncanny knack for completely destroying habitat that is essential for other species to live—we take and take, without giving back. But we humanimals are a flexible lot, compared to most species known as specialists that live in narrow habitatNative forest, Vancouver Islands and often have precise dietary needs. When environmental conditions change, generalists like us are usually able to adapt (at least so far), but specialists often become victims who silently go extinct: They can’t simply move on, quickly change their diet, or “reinvent” themselves.

Humans have the ability to conserve, restore, and give back to the earth some of what we’ve taken. I’m heartened by some thrilling restoration and preservation work going on that interlocks and connects broken landscapes—unbroken corridors are essential for wildlife caught in our anthropocentric time.

Aptly named, regional conservation partnerships — coalitions of small land trusts and the like — work to preserve and protect mosaics of public as well as private land (by buying up parcels or securing easements, basically paying landowners to protect the present and future) and connecting them by wild corridors. The Wildlands Network is one such organization that is working on four “wildways” in North America; the Pacific Wildway is closest to home, running from Alaska to Baja.

It is these gigantic projects that make the biggest splash ecologically. But small, conventionally landscaped areas are often stagnant ecosystems that add to our overall environmental debt. So my mission is to make it easier for people in the Pacific Northwest to turn their traditional yards into spaces that benefit dwindling biodiversity, to help people garden with nature in mind. Many books tell us why we need to move away from “typical” landscapes that are dominated by nonnative ornamental plants and lawn composed of exotic grasses—both of which offer few ecological benefits. But few tell how to do it, and in our region (from southern B.C. to southern Oregon, west of the Cascades).

Ecologically functional gardening is some of the best conservation work you can do. Supporting environmental groups and campaigns is wonderful, but with this you know exactly where your money goes. You can do a little or a lot. And with some patience and a bit of honest labor, the benefits will gradually be observable right outside your window. I invite you to join me on the front line (or in your back yard or side yard, or even parking strip!) to help sustain native fauna and flora, the backbone of ecosystems.

© 2014 Eileen M. Stark

To leave a comment, please click on the blog’s title