A Glimpse of an Owl


“There’s something large in the birdbath,” announced my husband as he peered out the dining room window late one recent afternoon. Looking through a kitchen window, I caught a glimpse of what appeared to be a stocky, furry creature with no neck, but could only recognize that it was definitely not a hawk. “It’s an owl!” Rick shouted, already on his way to the basement where we keep the camera. By that time I’d grabbed my binoculars, conveniently hung by the window for these moments, and focused on a bright-eyed Western Screech-Owl (Megascops kennicottii), likely a juvenile (judging by the fluffy/messy feathers the color of tree trunks). We’d heard these owls, on and off, in past years — especially on warm evenings — but had never seen one. And that’s the way they wanted it.

Western Screech-Owls hunt at dusk, night, and dawn, and are much more often heard than seen. Their high pitched hoots — that accelerate with the rhythm of a bouncing ping pong ball — fill the night air like nothing else. (Contrary to their common name, they don’t “screech” but may “bark” when frightened.) Prior to the loss of an enormous American elm tree in front of our house, their voices sometimes drifted through the bedroom window on summer nights. Last night we heard one again, albeit a little more distantly. Perhaps it was this little owl.

Diverse habitats
Found throughout most of western North America from southeastern Alaska and western Canada southward to western Texas, Mexico and part of Central America, their habitat is varied and includes coastal forests, riparian areas, scrublands and deserts. In the Pacific Northwest they can be found in wooded and forested habitat under 6,000 feet — especially with deciduous trees — but may also be found in parks, suburbs, and other residential areas. They weigh 5 to 9 ounces and grow to 7 to 10 inches in length, with a 20 to 22-inch wingspan. Color morphs include the gray Pacific, brown Pacific and Mojave. In general, they are grayish or brownish with heavily streaked feathers. With large yellow eyes, pointy little ear tufts, a yellow bill and a round body and head, they are — in my opinion — adorable.

Food, nests and babies
Their days are spent either in a roosting cavity or perched at its entrance, camouflaged, no doubt planning nighttime hunting adventures which involve locating prey by sight as well as sound. Their generalist diet varies with the habitat; they eat mostly small mammals such as mice, rats, and bats, and large night-flying insects as well as spiders, but may also take some small reptiles, birds, fish, mollusks, and amphibians. I read somewhere that they occasionally take prey bigger than their own bodies!

Like other secondary-cavity nesting birds, Western Screech-Owls roost and nest in natural cavities, such as those excavated by woodpeckers or those formed by branch breakage; in some regions they may nest in cliffs or cactus. They also might use nest boxes if properly placed and dimensions are adequate, but Eastern Screech-Owls are reportedly more likely to use them than Western. During courtship, a pair will often sing duets and the male presents food to the female. Being “socially monogamous,” the pairs raise their young together. Observational studies reveal that pairs show affection, often perching closely and preening one another. The male locates a usable cavity and presents it to the female, sometimes with a tasty morsel in his beak. Throughout the breeding season, the male will roost near the nest cavity; when not roosting, his job is to supply all the food for the female while she incubates the eggs (for around 26 days) and cares for the young. Both the female and the male take turns guarding the entrance of the cavity from predators. After the young have most of their feathers, the female helps with hunting. When the nestlings no longer need her constant attention, she will roost nearby, often touching the male. After the month-old young leave the nest, they continue to be cared for by their parents for another five to six weeks.

Conservation
Although Western Screech-Owl population trends are difficult to study because of their nocturnal habits, populations reportedly have declined slightly between 1966 and 2019, according to the North American Breeding Bird SurveyPartners in Flight estimates the global breeding population at 180,000 and rates them 13 out of 20 on the Continental Concern Score, a relatively low conservation concern. However, the Pacific Northwest population of Western Screech-Owls are highly vulnerable to development (especially in riparian areas), forest clearcutting and other logging, noise pollution while nesting, rodenticides, and vehicular and power line collisionsTheir requirement for snags (standing dead trees) for nest sites have also had a negative impact on their numbers. And according to Audubon, climate vulnerability in the Northwest is fairly high (especially in the Puget Lowlands and Willamette Valley) due to “wildfires that incinerate habitat” and “spring heat waves that endanger young birds in the nest.” The Nature Conservancy of Canada states that Western Screech-Owls “are assessed as threatened by the Committee on the Status of Endangered Wildlife in Canada,” with their small populations threatened by the loss of mature trees that provide cavities for nesting. Although these owls can adapt to degraded habitat and human presence to some extent, maintaining strong populations will require vigorous protection of open forested areas near water in both rural and residential areas.

I wrote about Western Screech-Owls in my book many years ago: “A mated pair of Western screech-owls once graced my neighborhood, but they left forever when a mature tree they used was drastically hacked back during breeding season, a time when birds are intensely sensitive to disruption. I still think of them and how they softly called to each other in the impending dusk, and wonder if they were able to find a more peaceful place to nest. Their eviction symbolizes what can happen when human ignorance and thoughtlessness intervene. Indeed, recognizing that every front, back and side yard—even those within urban areas—is a part of an intricate ecosystem … is the first step toward encouraging rich, natural diversity.” Let’s hope this little owl has a long, rich life.


© 2024 Eileen M. Stark

Pacific Northwest Native Plant Profile: Red huckleberry (Vaccinium parvifolium)


Graceful, open, and vibrantly green, red huckleberry (Vaccinium parvifolium) is a quintessential Pacific Northwest native shrub. It’s not often used in garden situations, but it ought to be, considering its beauty and wildlife appeal. And unlike other native huckleberries that ripen in late summer or fall, red huckleberry typically offers dazzlingly red (and tasty) fruit in mid to late summer.

Part of the appeal of this deciduous huckleberry is its bright green, twiggy, angled branches that support smooth, oval, and equally green leaves. Flowers are small, urn-shaped and greenish-yellow, but often have a lovely pink hue. Fruit is a spherical berry high in vitamin C, which ripens to a brilliant red. At maturity, it typically reaches five to ten feet tall and nearly as wide, although it can grow larger in optimal conditions. 

Wildlife value
In late spring to early summer (depending on elevation and latitude) blossoms attract hummingbirds, native bees, and other insects. Berries are attractive to both humans and wildlife: Birds such as flickers, jays, thrushes, chickadees, towhees and bluebirds, and mammals, including deer mice, white-footed mice, raccoons, pika, ground squirrels, chipmunks, and foxes. Reportedly, the fruit is a big part of black and grizzly bears’ late summer and autumn diet. With time, this shrub may form a thicket, which provides shelter or nesting sites for small birds and mammals.

How it grows
The key to a healthy eco-garden is the choice of plants that fit your conditions and are locally native. Of course we don’t always have the exact conditions a plant requires, especially in urban situations where natural conditions have been drastically changed. Red huckleberry is a plant that will probably need some extra encouragement, but I think it’s worth the added effort. When selecting which plants will join your garden, always check on the circumstances in which it’s found in the natural world, where it’s found, and choose accordingly. 

Red huckleberry occurs naturally in the understory of moist coniferous or mixed evergreen forests, sometimes in the transition zone of wetlands or at forest edges, at low to middle elevations from southeastern Alaska and British Columbia, southward through western Washington and Oregon to central California. While it’s quite tolerant of shade (and usually grows larger in shade), it can do well in a woodland garden with some sun if it’s not drought stricken or in hot afternoon sun. Plants that get some sun, including those found in forest openings, generally appear lusher and produce more fruit if other requirements are met. It’s usually found in humus-rich soil growing on some rotting wood — often a fallen log or an old stump — so be sure to include some in very close proximity to your new plant. In a nutshell, it needs mostly shady sites (with perhaps some morning sun or dappled sunlight) and moist — but somewhat well drained — acidic soil (pH 4.5 – 6) that has plenty of organic matter, as well as some rotting wood to grow on.

Try it at home
A few autumns ago, I added a gallon-sized individual to a backyard bed situated to the north of some large native conifers, which provide some shade. My slightly acidic soil had been amended with organic matter over the years and allowed to accumulate natural plant debris, and I added what will really help its survival: Rotting downed wood to latch onto. I finished off my planting with a layer of leaf compost, topped by a few handfuls of conifer needles and cones blown down from nearby trees, all of which help retain moisture and keep pH on the acidic side. I water it deeply but infrequently during dry periods. One last tip: Vaccinium species don’t do well with root disturbance, so don’t dig in the soil near its roots or attempt to move it after it’s been in the ground for more than a year or so.

At planting time, provide red huckleberry with a growing medium of decaying stumps or logs to mimic natural conditions.

Grab a partner
In coastal forests, red huckleberry is commonly associated with plants such as mature western hemlock (Tsuga heterophylla) and sitka spruce (Picea sitchensis), black huckleberry (Vaccinium membranaceum), oval leaf huckleberry (V. ovalifolium), salmonberry (Rubus spectablis), thimbleberry (R. parviflorus), trailing blackberry (R. ursinus), strawberry bramble (R. pedatus), salal (Gaultheria shallon), Cascade Oregon grape (Mahonia nervosa), bunchberry (Cornus unalaschkensis), lady fern (Athyrium filix-femina), oak fern (Gymnocarpium spp.), and woodland strawberry (Frageria vesca). In southwestern Oregon and northern California, Pinemat manzanita (Arctostaphylos nevadensis), California coffeeberry (Rhamnus california), baldhip rose (Rosa gymnocarpa), California laurel (Umbellularia californica), boxleaf silktassel (Garrya buxifolia), and huckleberry oak (Quercus vaccinifolia) are often associated. In the western Cascades below 5,000 feet, it’s found with mature western hemlock (Tsuga heterophylla), western redcedar (Thuja plicata) and Douglas-fir (Pseudotsuga menziesii), as well as vine maple (Acer circinatum), salal (Gaultheria shallon), salmonberry (Rubus spectabilis), Cascade Oregon grape (Mahonia nervosa), sword fern (Polystichum munitum), deer fern (Blechnum spicant), fairy bells (Prosartes spp.), bleeding heart (Dicentra formosa), foamflower (Tiarella trifoliata), and many others.

 © 2023 Eileen M. Stark

Pacific Northwest Native Plant Profile: Western maidenhair fern (Adiantum aleuticum)


It’s a drizzly Sunday in June, one that requires a couple of sweaters to keep me warm. But I can’t complain when I see so many native plants thriving, obviously in their element during this cool, damp spring—ferns, wild ginger, fairy bells, goat’s beard, vanilla leaf, and many others. Western maidenhair fern (Adiantum aleuticum), in particular, which can be found in nature basking in the mist of waterfalls, appears stunningly luxuriant right now. I watch the lush fronds of a plant in my front yard, now 20 years old and nearly three feet tall and four feet wide, move silently with the slightest breeze. “Tender and delicate, but perfect in all their details, far more than any lace work—the most elaborate leaf we have,” was the way Thoreau described ferns.

If you’re wondering about Adiantum aleuticum’s genus name, it comes from the Greek adiantos, meaning unwetted, in reference to its water repellent foliage. The species name refers to the Aleut indigenous peoples of the Aleutian Islands. Although this fern was previously known as a subspecies of Adiantum pedatum, subtle morphologic differences led to its reclassification as a separate species in the early 1990s. Also known as “five-finger fern”, the common name “maidenhair” may refer to either its glossy, dark, smooth stalks or the finely textured dark root hairs that grow from a short, stout rhizome.

How it grows
A highly textured perennial with an airy, delicate-looking structure and fine-textured deciduous foliage, Western maidenhair fern grows mainly at low to middle elevations in the shady understory of moist forests and ravines, along stream banks, in rock fissures near flowing water, and even on talus slopes. It can be found in southern Alaska and the Aleutian Islands, British Columbia, Washington, and Oregon, as well as parts of California, the Rocky Mountains, and a few disjunct populations in northeastern states and Canada.


Each dark brown or purplish-black stalk (aka petiole or stipe) grows up to 30 inches in length and forks at the top into two, from which several others emerge in a fanlike pattern. Feathery pinnae (leaflets) are made up of 15-35 fan-shaped or oblong segments (pinnules), each 10-25 mm long with jagged apical margins. Like other ferns, it reproduces via spores as light as fairy dust. Spores are produced by crescent-shaped sori on the underside of pinnules, covered by in-rolled leaf margins. They can be produced during most of the growing season, but mostly in summer. For detailed info on how ferns reproduce sexually, wander over here.

Wildlife value
Lively green foliage provides microhabitat, shelter and resting places for arthropods, amphibians, birds and other small creatures who frequent the forest floor and may in turn supply food for others. Maidenhair fern may even provide perching spots for little birds who have just left the safety of their nest and are figuring out what to do next (pictured, right)! As winter approaches, the plant deteriorates, covers the soil and eventually adds nutrients following decomposition.

Try it at home
Native ferns deserve space in our landscapes. Besides being important elements of habitat for native wildlife, they might be the best choice for shady, damp spaces that are difficult to fill. Maidenhair fern is easily grown in shaded, moist areas with soil that’s somewhat acidic, high in organic matter and drains well, so consider it in beds, borders and woodland gardens with dappled shade to full shade. In hot areas, be sure to provide enough moisture, especially before and during excessively hot periods; hot afternoon sun will scorch leaves. Space plants two to three feet apart, or intermingle them with other plants that have similar needs, allowing for a mature width of about three feet. Don’t plant crowns too deep. Reportedly, maidenhair fern is deer resistant.

Grab a partner
In the Pacific Northwest, west of the Cascades, this lovely fern will do well in the company of others in the Western hemlock/Douglas-fir plant community, including western redcedar, vine maple, trillium, sword fern, deer fern, false solomon’s seal, stream violet, western meadowrue, goat’s beard, oxalis, piggy-back plant, foam flower, wild ginger, and many others.

© 2022 Eileen M. Stark

Pacific Northwest Native Plant Profile: Pine (Pinus species)


Well over one hundred species of pine help support our planet, which makes the genus Pinus the largest within the conifer phylum known as Pinophyta, the woody cone-bearing plants. Found across the Northern Hemisphere, Pinus is of ancient origin, having appeared around 180 million years ago. In addition to the rich wildlife habitat, beauty, shade, fragrance, rain interception and carbon sequestration they provide, the majority of pines are drought tolerant, fire resistant and most can be extremely long-lived, with some species surviving 1,000+ years when undisturbed.

How they grow
Evergreen and resinous, pines generally grow 50–150 ft tall, although some, like ponderosa pine, can grow over 200 feet (one in southern Oregon’s Rogue River-Siskiyou National Forest towers to more than 268 feet tall!).

On adult pine trees, needle-like leaves are green and bundled in clusters called fascicles, unlike other conifers. Each fascicle can have one to seven needles, depending on the species, and assist in identification. In the Pacific Northwest west of the Cascades, there are five native pine species, a few of which can also be found at fairly high elevations east of the Cascades summit. They have either two, three, or five needles per fascicle, which stay on the plant for anywhere from two to forty years, again depending on the species.

Seed cones (female) are hard and woody, with tough scales that serve to protect the developing seeds until dispersal time comes. In some species, maturity of the cone causes scales to open and free the winged seeds. In others, scales need to be broken or pecked open by a hungry animal in order for the seeds to be released. And then there are the species that have scales sealed shut with resin: Known as “serotinous” cones, they need a trigger to release their seeds. Although serotiny can be caused in some plants by excessively moist or dry conditions, high solar heat, or death of a branch or the plant, most pines that are native to regions where wildfire naturally occurs depend on the high temperatures from periodic fire to soften the resin and expose the seeds. Fire has been a part of various natural ecosystems for millennia; having a canopy full of seeds ready to go following a fire ensures dispersal for a new generation without competition. But it can take decades for that to happen and on many sites currently, such fire regimes no longer exist. When natural fire is suppressed, species that need fire to regenerate will slowly die without ever releasing their seeds, and species dependent on those pines are consequently affected.

Pines do best in open areas and are not shade-tolerant. Generally, they don’t need rich soil and do best if it drains fairly quickly. Some can survive in harsh environments such as cold, exposed ridges at high elevations or latitudes, or even the wet and windy Pacific coast.

Wildlife value
Pines are one of the most valuable food plants for wildlife in the Pacific Northwest, particularly for small mammals like chipmunks and squirrels, as well as birds such as grosbeaks, jays, chickadees, and nuthatches who forage on the highly nutritious seeds and help distribute them. Larger birds, including woodpeckers, also use pine trees as food sources, particularly dead and dying pines. Pine needles may be eaten by some Lepidoptera (butterfly and moth) species (such as the larvae of western pine elfin that use lodgepole and ponderosa pine for food), as well as by pine sawfly, deer, and mountain goats; needles are also used in nest building. Large pines provide excellent roost and nest sites, while smaller pines offer crucial cover for many animals. Fallen needles may serve as bedding for larger mammals such as deer.

Native pines west of the Cascades
Below is info on the five native pine species that occur in the PNW west of the Cascades, plus one honorable mention; they are noted according to the number of needles per fascicle. If you want to identify a particular tree, count the needles per fascicle, evaluate the appearance of the cones, and check the natural range.

Fast-growing Pinus contorta evolved into four varieties, each of which adapted to its geography. Despite their large ecological and morphological variability, all varieties of P. contorta have two stiff, one to three-inch long needles per fascicle, which are often twisted and are mostly found toward the ends of twigs. The seed cones are small (typically one to three inches long), hard, prickled toward the top of the cone, and found near branch tips. The varieties are inter fertile in areas where their ranges overlap.

Pinus contorta var. contorta

Three varieties are found in the PNW. It was shore pine (a.k.a. beach pine or twisted pine), Pinus contorta var. contorta, that led David Douglas to offer the species’ epithet contorta when he first laid eyes on one in 1826: Reportedly, he found some relatively short trees growing in contorted and gnarly outlines near the mouth of the Columbia River on wind-swept, rocky sites with the added insult of oceanic salt spray. Bark is thick, deeply grooved, and a deep red-brown in color. Small brown cones are often asymmetrical and release seeds at maturity. Adapted to poor and rocky soils, shore pine’s range includes the San Juan islands, the outer coasts of British Columbia, Oregon, Washington and northern California, bogs of Alaska and Washington, and only occasionally the Puget-Willamette Trough. On more sheltered sites, this coastal species will grow taller and more erect (up to about 50 feet tall), and slightly resembles the appearance of Pinus contorta var. latifolia (lodgepole pine), which naturally occurs further inland, mainly in the Washington Cascades east of the Puget Trough and at higher elevations (up to 11,500 feet).

Lodgepole pine grows taller (up to ~100 feet) and more slender (especially when growing close together) with thin bark and a narrow crown. Adapted to stand-destroying fire, it is one of the first trees to come back after a natural periodic fire; its cones, which vary in shape and may be solitary or paired, are considered fire-dependent. However, this cone characteristic varies with tree age and local fire history, with older trees and those growing in areas with frequent fires able to produce serotinous cones. Remarkably, some lodgepole pine trees are even more variable, having both serotinous and nonserotinous cones, which may enable future trees to adapt to change.

Pinus contorta var. murrayana, Sierra-Cascade lodgepole pine, grows in the eastern Cascades of southern Washington, Oregon and the mountains of California. Its cones usually open on the tree when mature, before a fire. Both lodgepole pines will grow in situations that other conifers cannot tolerate.

Another tall, handsome pine is Pinus ponderosa, or ponderosa pine (aka western yellow pine), a fairly fast-growing tree to 100 feet by 25 feet in cultivation, larger in natural areas. With bundles of three long, pointed bright green needles that fall off after several years, ponderosa pine has a straight, robust trunk and a wide, open, cylindrical crown when mature. Bark is furrowed and dark on young trees; on older trees the thick, fire-resistant bark typically turns a golden brown or cinnamon color, flakes off into scaly plates separated by deep fissures, and has a vanilla scent in heat. Tan to reddish-brown, conical or egg-shaped female cones have stiff prickles that curve outward. The root system spreads widely and has a deep taproot. Although best grown in full sun with well drained, deep, somewhat moist soil when young, ponderosa pine is reportedly adaptable to a variety of elevations, soil and humidity, and is drought tolerant when established. Damage may occur due to late frosts.

Lustrous needles of Pinus ponderosa subsp. Benthamiana.

Ponderosa pine is subdivided into five subspecies; P. ponderosa subsp. ponderosa is most commonly found in cold, dry environments east of the Cascade summit, throughout the Rocky Mountains and southward. Pinus ponderosa subsp. Benthamiana (aka Pacific ponderosa) is endemic to the Willamette Valley (where it is sometimes called Willamette Valley pine or Pinus ponderosa var. willamettensis), as well as the mountains of southwestern Oregon, parts of California and a few sites in western Washington. Genetically different from ponderosa subspecies in other ecoregions, it usually has longer needles (up to nine inches) and is suited to higher rainfall in valley bottoms, as well as drier slopes. Prior to 1850, it thrived in oak savanna, riparian forest and upland prairie dispersed among other species (particularly Oregon white oak, Quercus garryana). Logged extensively by settlers as they cleared the land for lumber, agriculture and other development, until recently the only remaining native stock in the Willamette Valley survived in small scattered stands. Wildlife who needed the trees for food and nesting habitat suffered from the loss, including the rapidly dwindling Lewis’s woodpecker (now extirpated; there have been no breeding records in the Puget Lowlands since 1980; the last known nest in the Willamette Valley was near Scapoose in 1970; they have not been seen in the Rogue and Umpqua Valleys since the early 1990s). While this pine does best in full sun and moist but well-draining soil, it also tolerates somewhat dry conditions and lean soils. Choose associate species from Oregon white oak (Quercus garryana) ecosystems in this post.

Another three-needled pine that possesses similarities to ponderosa pine is Jeffrey pine, Pinus jeffreyi, named by Scottish botanist John Jeffrey. A major difference is its range: In the PNW it occurs only in southwestern Oregon at 4800 to 9600 feet in elevation, often in windswept outcroppings or on serpentine and other nutrient-poor soils where it grows slowly but outcompetes other trees. In addition, its needles are a duller bluish-gray and thicker than ponderosa pine’s, and they are typically held longer (five to eight years). Cones become much larger (up to 12 inches long), with prickles that curve inward. Older bark tends to be darker and more narrowly grooved than that of ponderosa’s.

Pinus attenuata (knobcone pine) also has fascicles of three yellow-green needles, which are typically three to seven inches in length and twisted. Buff colored, three to six inch, serotinous cones — that let go of seeds only after fire melts the resin — have knobby bumps on one side, and grow in bristly, dense clusters. Bark is dark with loose, scaly plates on this very long-lived, relatively small (30 to 50 foot) tree with a conical crown; it may be shrubby on poor sites. In the PNW west of the Cascades it’s found mainly in southwestern Oregon on rocky slopes at high elevations that are prone to fire (often on serpentine soils), as well as further south into parts of California and Baja.

Pinus lambertiana (sugar pine) is a very large tree (120 to 200 feet tall) that has fascicles of five pointed needles that are two to four inches in length and striped with white on all three sides. Woody cones are straight and grow very large (up to 19 inches), with straight, thick scales. Bark is reddish-brown to purplish and furrowed; on young trees it’s broken into narrow plates and on mature trees broken into long plates. It’s found at mid to high elevations in the mountains of southern Oregon (from Linn County, southward), as well as southern California, the Sierra Nevada range and northern Baja. David Douglas named the species lambertiana in honor of the English botanist Aylmer Bourke Lambert in 1826.

You may be familiar with Pinus monticola, Western white pine, since it is fairly easy to grow (despite its susceptibility to white pine blister-rust). A large, symmetrical tree (to 130 feet but smaller in cultivation), it also has fascicles of five needles, but white pine’s thin bluish-green needles have (surprise!) white lines on two sides of each 3-sided needle. Slender, curved woody cones are four to ten inches long, with scales that are thin and may be curved but without prickles. Bark is gray, thin, and broken into small rectangular or hexagonal scaly plates on mature trees. Range includes southern British Columbia, Washington, Oregon, and California’s Sierra Nevada, from sea level to about 2500 feet in elevation in moist valleys and open slopes.

The very slow-growing, often shrub-like or gnarled Pinus albicaulis (whitebark pine) also has short needles in bundles of five, thin grayish bark, and small roundish cones without prickles that remain closed on the tree at any age. Since it naturally occurs only at high elevations (near timberline) in southern B.C, the Olympics, the Cascades, east-central California and the Rocky Mountains, you won’t be tempted to grow it in your low elevation yard, but I’ll mention it as it certainly deserves our attention and concern.

Data from USFS Forest Inventory and Analysis surveys report that “as of 2016, 51% of all standing whitebark pine trees in the US were dead” and over half of that amount occurred approximately within the last two decades. Due to severe population decline, the USFWS determined that it “warrants protection under the Endangered Species Act (ESA), but … adding the species to the Federal List of Endangered and Threatened Wildlife and Plants is precluded by the need to address other listing actions of a higher priority.” The severe decline is attributed to multiple stressors, especially white pine blister rust (introduced into western North America through the horticulture trade in 1910 from Europe), but also outbreaks of mountain pine beetle (made worse by a warming climate), fire suppression and catastrophic fire, poor management, and, of course, climate chaos. UPDATE: In December 2022, this species was listed as threatened under the federal Endangered Species Act.

Whitebark pine is very long-lived, with some surviving 1,000 years. Considered a keystone species, it regulates runoff by slowing down snowmelt, controls soil erosion due to its ability to grow quickly after disturbances such as fires, and provides a rich source of food for birds like Clark’s nutcracker and mammals such as grizzly bears. It depends almost exclusively on Clark’s nutcracker for seed dispersal, but there needs to be sufficient density and seed abundance to attract the birds. More info here.

Try pines at home
If you want to add pines to your landscape, remember that it’s best to grow native trees and other plants that truly belong in your neck o’ the woods. Obtain plants propagated from source material that originated as close as possible to your site and with similar habitat features. Using such “local genotypes” helps ensure that you get plants that are well adapted to your area and preserves the genetic diversity that helps plants and animals adapt to changing conditions. Ask growers and nurseries about their sources if you’re unsure.

Provide good drainage and enough sun and space (both above and below ground) for these beauties. Whenever possible, grow them with their natural associate species, which have similar needs, to recreate a native plant community that is able to impart the most benefits to the ecosystem and result in more habitat for wildlife. And if you have the space, plant a grove!

© 2022 Eileen M. Stark

Just the Thicket … For Wildlife Habitat


If you’re looking for ways to counteract — in a small but significant way — the relentless destruction of the natural world and want to turn your yard into a place that supports the wildlife community, or you already garden for biodiversity, you probably know that appropriate habitat — food, water, space, cover — is essential. Food is best supplied by regional native plants that produce insects, nectar, pollen, fruit, and/or seeds, while water comes either from natural sources or human-made birdbaths or ponds. Adequate space is important to prevent competition for food, cover, and nesting sites. Cover, or shelter, is as crucial as the others because wild fauna need places that not only shield them from inclement weather, but also hide them from predators (and people). Predatory animals themselves often need cover to successfully obtain prey. A lack of cover is a limiting factor for many wildlife populations.

Increased biodiversity comes with careful planning and placement of cover habitat supplied both vertically and horizontally with small and large native shrubs and trees. Those with particularly dense foliage may also provide valuable nesting habitat, as well as privacy for you, or even a windbreak if strategically placed.

Thickets are a great way to provide cover for relatively small animals, due to their tendency to be impenetrable to large species. They may be dense groups of trees or shrubs, usually dominated by one or a few species that tend to be multi-stemmed and often densely twiggy, or they may be formed by a single species that either enlarges via underground suckering stems or sheds large numbers of seeds that have the ability to grow beneath or close to the parent plant. Thickets of the latter type may also be spread by human disturbance. 

Even when leafless, red-twig dogwood (Cornus sericea) attracts birds.


Because thickets tend to fill quite a bit of space, they usually are not suitable for very small gardens, since they will tend to “take over” a small space, either fairly quickly or over many years, depending on the species. But if you have a fairly large yard or an acreage, native thickets create mini-ecosystems within which essential food and cover are supplied for a large number of beneficiaries, from insects and birds to reptiles, amphibians and mammals, depending on the location. They’ll also conserve soil moisture and may slow — or even prevent — erosion on slopes. And, when well established, thickets keep out many invasive weeds (note: always remove weeds well before planting any type of native plants). Many of these plants also can provide food for us, but I suggest you share with wild visitors.

Thickets often get a bad rap because they don’t look particularly neat and orderly, but if you garden for wildlife you know that messy and naturalistic is much better for the wild ones. To tidy up shrubs that tend to develop into thickets, gardeners often clip out suckers and sprouts for appearance’s sake, but that’s to the disadvantage of wild visitors.

Pollinators love thickets!

Although thickets (especially thorny ones) may not be suitable for most front yards, in back yards or other areas, they can be wonderful wildlife magnets. And when located as far from human activity as possible, they also lend tranquility in an urban environment. Though my yard is just one sixth of an acre, I have several thickets—one that’s composed of snowberry and clustered rose, several of tall Oregon grape, and a large clump of thimbleberry. It seems there’s almost always something going on: A little bird or two flitting around branches looking for food, a ground feeding bird foraging within fallen leaves, pollinators hard at work, or — during nesting season — a bird vocally establishing his territory. Flowers’ pollen and nectar attract a variety of native pollinators in springtime, fruits or seeds become available later in the year, and the rose offers a place for mourning cloak butterfly larvae to develop.

Choosing thicket species
In nature, thicket-developing plants grow in forested areas, as well as open areas such as historic savannas (a grassland with trees scattered at least 100 feet apart), upland prairies (another type of grassland) or wet prairies. Needless to say, savanna/prairie plants require more sunlight than forest thicket species. Since humans have converted most savanna and prairie habitat to agriculture and livestock grazing, those thicket species aren’t having an easy time; they’re mostly forced to live on forest edges and fence rows and are threatened by invasive species.

Prairie or savanna thickets naturally would be surrounded and complemented by native herbaceous plants and grasses that are members of a plant community, which together would create a highly supportive ecosystem. Forest species also would naturally occur with ‘associates’ that interact and flourish together.

Thorny native thickets, such as this Rosa pisocarpa, offer a place for birds to rest as well as forage.


Here are some plants that typically will form thickets in the Pacific Northwest, west of the Cascades (but it’s not an exhaustive list). Choose species that would naturally occur in your area; check native status to county level here.

For sun to part sun: Douglas hawthorn (Cragateus douglasii), Red-twig dogwood (Cornus sericea), California hazelnut (Corylus cornuta var. californica), Western crabapple (Malus fusca), Western serviceberry (Amelanchier alnifolia), Ninebark (Physocarpus capitatus), Tall Oregon grape (Mahonia aquifolium), Bitter cherry (Prunus emarginata var. mollis), willows such as Salix scouleriana, S. lucida, S. hookeriana, and S. sitchensis, red-flowering currant (Ribes sanguineum), wild roses (Rosa nutkana, R. pisocarpa), Douglas spiraea (Spiraea douglasii*), white spiraea (Spiraea betulifolia var. lucida), Thimbleberry (Rubus parviflorus*), Salmonberry (Rubus spectabilis*).

For part shade to shade: Red elderberry (Sambucus racemosa), Snowberry (Symphoricarpos albus), Osoberry (Oemleria cerasiformis), Salal (Gautheria shallon).

* may spread rapidly.

Fox sparrow foraging beneath a thicket stays safe.



© 2020 Eileen M. Stark

Pacific Northwest Native Plant Profile: Red-flowering Currant (Ribes sanguineum)


Although red-flowering currant (Ribes sanguineum) is a deciduous shrub, it offers year round appeal and habitat, making it a favorite among Pacific Northwest gardeners and wildlife, alike. Not one December goes by that I don’t marvel at its ability to hold onto many of its seasonally colorful leaves until the solstice or beyond, and this year was no exception. Just a short while later — following barely two months of downtime in the new year — strikingly gorgeous flower clusters burst forth prolifically at the same time that fresh leaves emerge. No wonder another of its common names is “winter currant.” Fast forward a few more months, and dark dusty-blue berries, a favorite of many bird species, will adorn this multi-stemmed shrub. 

The sole genus in the Grossulariaceae family, Ribes means ‘currant’ in medieval Latin. One of about 30 currant and gooseberry species in the Northwest, sanguineum refers to the reddish color of the flowers. It’s one of those native plants that had to be chaperoned by Scottish botanist David Douglas to Britain—where it was introduced into cultivation in the 1820s—before it acquired a return transatlantic ticket to popularity with gardeners on its home turf. Not too small or huge, it can usually find a home in places that offer well-drained soil and at least a quarter day of sun.

How it grows
Red-flowering currant naturally occurs at the edge of forests as well as open, rocky slopes and disturbed sites, at low to middle elevations from southwest British Columbia into Washington and Oregon between the Pacific coast and the Cascades, and as far south as central California.

Wildlife value
Pendulous flower clusters, which consist of numerous lightly fragrant, pink to reddish tubular flowers, bloom in profusion along this shrub’s many stems. They offer nectar and pollen at a time when early-emerging pollinators—such as queen bumble bees who must secure a nest and provide for offspring all by themselves—have little else to eat. The early blossoms are also attractive to birds, especially hummingbirds, but also bushtits, making this species a hub of wildlife activity for well over a month. Later on, when berries ripen as summer wanes, birds such as American robins and cedar waxwings (pictured, below) feast; we can also eat them but they are rather tasteless. The small, lobed leaves may provide food for zephyr (Polygonia gracilis zephyrus), Ceanothus silkmoth (Hyalophora euryalus), and other butterfly and moth larvae, which in turn supply food for insectivorous birds. 


Try it at home
Red-flowering currant prefers sun to part sun, and well-drained soil. While tolerant of clay soils, it doesn’t do well on poorly drained sites. Useful for erosion control on slopes, it may eventually form a thicket, which is helpful for wildlife that needs cover.

Mature size varies from around six to ten feet tall; width is typically similar, so do allow it enough space. A fast grower, it may reach four or five feet in just a few years and even produce blossoms as well. If you’re looking to use this shrub in a border, space them five to ten feet apart (on the low end if you want some density and overlap). Although this shrub is quite drought tolerant when established (after two to three years), water it deeply but infrequently in the hot summer months thereafter, especially if your site receives a lot of sun or reflected heat from buildings or fencing, or if drainage is quick. Plant in fall for best results.

The only downside to this lovely shrub is its relatively short life: typically just 20 to 30 years. But replacement is easy since it readily self-sows. Thus, propagation is best achieved via self-sown seed, which are easily dispersed by birds or fall to the ground below. If you want to DIY, collect seeds as soon as fruit is ripe in mid to late summer, remove the pulp and dry them in a shaded place; then sow in autumn (outdoors to allow for stratification). Seed reportedly has a long shelf life if stored in a cool/dry/dark place.


Grab a partner
Since red-flowering currant grows in a fairly wide range of habitats, there are a number of plants with which it interacts in intact ecosystems. For best ecological and gardening results, choose associated native plants that live in communities that currently grow or likely would have grown in your immediate area. In the Pacific Northwest, some of the plants that red-flowering closely associates with include Douglas-fir, bigleaf maple, madrone, bitter cherry, oceanspray, vine maple, elderberry, mock orange, serviceberry, manzanita, salal, sword fern, kinnikinnick, and others. 

Buy plants propagated from source material that originated as close as possible to your site. Using such “local genotypes”  helps ensure that you get plants that are well adapted to your area and preserves the genetic diversity that helps plants (and animals) adapt to changing conditions. Ask growers and nurseries about their sources if you’re unsure.

Although many cultivars—with a range of flower color—have been developed, it’s best to choose true species or varieties found in nature. A related species for very moist places is wild gooseberry (Ribes divaricatum), which has edible fruit.

© 2019 Eileen M. Stark

Pacific Northwest Native Plant Profile: Oregon grape (Mahonia species)

Mahonia aquifolium (landscape)

Oregon grape plants are colorful western shrubs with year round appeal and chances are there’s a species that will fit into your Pacific Northwest landscape. Named after Bernard McMahon, an Irish-born American nurseryman, the genus Mahonia is a member of the barberry family (Berberidaceae). But you may also see Oregon grape classified as Berberis, indicative of the extensive debate among botanists on how to classify this species. Although included in the large genus Berberis (an alteration of the Medieval Latin barberis, or barberry, from Arabic barbārīs), Oregon grape is still known as Mahonia in most commercial horticulture, so either is correct (at least as far as I’m concerned!). 

Wildlife value
Like all native plants grown where they evolved, Oregon grape plants are extremely beneficial and attractive to wildlife. Flowers provide for pollinators like bees, moths, butterflies, and hummingbirds, while the fruits, which may remain on the plant into winter, are favorites among birds such as towhees, robins, and waxwings, as well as mammals. Some butterfly and moth species rely on Oregon grape plants to host their larvae, including the brown elfin butterfly. Year round cover may support arthropods, birds, reptiles, amphibians and small mammals.

Cedar waxwings feed on Cascade Oregon grape (M. nervosa). ©Eileen M Stark


Three species
You can’t go wrong with tall Oregon grape (Mahonia aquifolium) for an evergreen, erosion-controlling, woody-stemmed, slightly prickly screen, barrier or woodland border, as part of an unpruned hedgerow, or as an accent plant (pictured top). Aquifolium means “water leaf,” likely named after the lustrous, wet-looking surface of the plant’s leathery leaves that Lewis and Clark first noticed near the Columbia River. Introduced to Britain in the 1820s as an expensive ornamental, its holly-like, pinnately compound leaves begin a bronzy coppery color, then mature to a deep green, with orange, red, or purple highlights in very sunny or cold conditions. Dense clusters of showy golden-yellow, lightly fragrant flowers appear in early to late spring. Ripening in late summer, the dusty-blue, round to oblong berries are slightly reminiscent of grapes, hence the name. Although they are tart and have large seeds, they are suitable for jams and jellies (with beaucoup sweetener) and have traditional medicinal properties, as do the roots. 

Tall Oregon grape’s range includes most of western Washington and Oregon, parts of Idaho and much of California, as well as northeastern Washington and southern B.C. It can handle nearly full sun to shade, but being a woodland species often found growing in somewhat open forests, it prefers some shade (although very deep shade will result in fewer flowers and fruit). Though it does best in slightly moist, acidic, well-drained soil, it’s an undemanding plant that can handle many soil types and drought when established. However, it is intolerant of poorly drained soils and high water tables. Since it will gradually spread into a thicket via tough rhizomes, place it away from pathways and allow it to eventually spread into a wildlife protective clump. If you don’t plan for its growth or it somehow gets out of hand, roots may be occasionally pruned and stems may be cut (as seldom as possible) nearly to the base for renewal. Arching stems typically reach four to eight feet in height, sometimes on the lower end in garden situations.

Try growing it with trees and shrubs such as Douglas-fir, western hemlock, ponderosa pine, vine maple, Indian plum, oceanspray, serviceberry, salal, and smaller companions like sword fern, western columbine, fleabane, delphinium, and others.    

Cascade (or long leaved) Oregon grape (Mahonia nervosa) is another handsome plant, but this one grows only up to about three feet tall,Mahonia nervosa often lacks shiny leaves, and very slowly spreads into a lovely, evergreen, soil-stabilizing ground cover over many years. Nervosa means “having distinct veins or nerves” and refers to the leaf venation. Showy, fragrant, erect, pale to bright yellow flowering stalks, which put on their show in early to mid spring, are trailed by the familiar deep blue berries in late summer to fall. 

This species naturally occurs in moist to dry forests, at low to mid elevations mainly west of the Cascades including Vancouver Island, often with oceanspray, osoberry, vine maple, sword fern, salal, and oxalis, but it’s also an associate of the drier Oregon white oak and madrone habitats. It prefers shade to part shade in moist, acidic soil, but can handle drought in cool areas when established. It’s a nice substitute for invasive English ivy.

Low (or creeping) Oregon grape (Mahonia repens) is an evergreen ground cover that grows one to two feet tall and four to six feet wide. It has a large range in the west; in Washington and Oregon it is mainly found east of the Cascades growing in conifer forests, so it does well in dry, shady conditions but can take some sun. Its leaves (pictured below) may be glossy or dull, tend to be rounder and—though toothed—feel less prickly than tall Oregon grape. In nature, where its range sometimes overlaps with tall Oregon grape (and in garden situations where we often place plants that Mahonia repensdon’t belong together), it may hybridize with its cousin and produce plants that are a bit taller than the true species. 

 

 

 

 

 

 

Propagation 
All Oregon grape species are best grown from seed (without drying them), with at least three months of cold stratification outdoors (wet, pre-chilled seed may also be planted in spring). Seed germination is reportedly erratic and unpredictable. If you have established plants you may find their progeny beneath them or elsewhere, as seeds are dispersed by birds and mammals; anything but very small transplants may not survive. Cuttings may also be tried in late fall. 

As always, buy plants propagated from source material that originated as close as possible to your site. Using such “local genotypes” helps ensure that you get plants that are well adapted to your area and that genetic diversity—which helps plants (and animals) adapt to changing conditions—is preserved. Ask growers and nurseries about their sources if you’re unsure.

Do you have Oregon grape but aren’t sure which species you have? This page has a handy leaf comparison (see photo on lower right column).
 
 
© 2019 Eileen M. Stark

To leave a comment, click on post’s title

Welcome Little-Known Moths to Your Garden

Smerinthus jamaicensis


The little sphinx moth caterpillar
 was on a mission: To find a safe, secure spot where she could transform herself and stay alive during the cold, wet winter months ahead. On a warm September day last year I watched as she inched her way across half the length of my back yard, occasionally meandering around roadblocks like plant stems and small rocks that must have seemed like insurmountable boulders to her (although at one point she nimbly climbed up and over a small log in her path). A couple of times she burrowed down into loose leaf cover, but then moved on, perhaps surmising that a better place would come along. After I walked away for a few moments I lost track of her. Since my yard is a leafy nirvana for butterflies and moths such as her species (Smerinthus jamaicensis or twin-spotted sphinx) that need to nestle themselves in soil under fallen leaves so they can pupate over the winter months, she probably found a suitable place that would hold her until a warm spring day allowed her to emerge and take to her wings.  

We’re nearing the end of National Moth Week, a short stretch of time set aside to appreciate these gentle, humble, and nimble flyers who tirelessly supplement the daytime work of bees, butterflies, and other pollinators, as well as offer food for other animals. They get a fraction of the attention that butterflies do and are often vilified, despite their close relationship, beauty, and rich diversity. Within their hidden world are unusual, intriguing, and dramatic behaviors. Moth species outnumber butterflies by around ten to one; there are more than 11,000 species in the U.S., with another 160,000 globally. 

Gardens are very important places for moths since development and agriculture severely limit their habitat. There might be dozens of moth species inhabiting an ordinary urban or suburban garden, and the way you manage yours can affect the conservation of their populations, which are, as you might expect, seriously in decline, like most insects. Here are some tips:

Protect them from light pollution. For nocturnal and crepuscular moths, as well as other insects and migratory birds who use celestial navigation, unnatural lighting can cause disorientation and confusion, leading to exhaustion and death. The best way to help restore their natural behavior is to turn off all exterior lights, using motion sensors when necessary. If you must have lights on, use only dim bulbs in warm tones, which are less likely to attract moths. Draw shades and draperies indoors as well, to prevent light trespass.

Ease up on “clean-ups”. Adult moths and their caterpillars, as well as some butterfly species including the mourning cloak, need fallen leaves, stems, twigs and other plant debris to help them hide from predators and to provide suitable places to pupate and spend the winter. Let fallen leaves stay on soil and delay cutting back spent plants until well into spring (the later the better), rather than doing it in autumn or winter (and always check branches that may hold a chrysalis). If you must neaten up a portion of your garden in the spring/summer, leave collected plant material elsewhere in your yard.

Forget about herbicides and other pesticides, which can kill moths and other insects. This will also benefit your garden by increasing the number of predatory insects that help control the pesky ones. There needs to be a supply of prey in order to feed the predators—it’s a natural cycle that needs to be supported.

Limit hardscaping (concrete, gravel, decking) and increase the amount of area given to plants other than lawn, since moths and other wildlife can’t use hardscape for habitat.

Grow a wide variety of plants (preferably native species local to your area) to appeal to a diversity of moth species—everything from grasses and flowering perennials to shrubs and trees. Gardening for moths is similar to gardening for butterflies and other pollinators, although moths generally tend to feed on a greater variety of foods than butterflies. 

As adults, most moths need a sugar source and they may feed on plant nectar, rotting fruit, or tree sap. Moth-pollinated flowers tend to be fragrant and pale or white, such as western mock orange (Philadelphus lewisii), oceanspray (Holodiscus discolor), and snow brush (Ceanothus velutinus), which allow nocturnal moths to easily find nectar after dark, so think “moonlight garden”. Moths that pollinate by day typically feed at flowers that native butterflies do, since they usually have long tongues. Some moths, like the twin-spotted sphinx, have reduced mouthparts and digestive tracts so don’t eat at all in their adult stage; they exist briefly only to mate and lay eggs, which in turn may provide food for predators like birds.

Almost all moth species need a host plant on which to feed during their larval stage. Many moth caterpillars eat leaves like most butterflies do, but some species may eat seeds, woody stems, or roots. The most important native host plants for moths and butterflies in the Pacific Northwest — considering the abundance of species they host — include Oregon white oak (Quercus garryana), oceanspray (Holodiscus discolor), and species in the following genera: Acer (maple), Alnus (alder), Arctostaphylos (manzanitas and bearberries), Ceanothus (wild lilac), Populus (aspen and cottonwood), Ribes (currants and gooseberries), and Salix (willows). 


© 2019 Eileen M. Stark

To leave a comment, click on post’s title

Pacific Northwest Native Plant Profile: Pacific Red Elderberry (Sambucus racemosa var. racemosa)

Sambus racemosa

Respect your elders! Words of wisdom to be sure, and I can’t help but apply them to elderberry shrubs as well. Long regarded as weedy, native elderberry approval ratings are inching up due to their ecological, medicinal, and ornamental charms.

Besides having good looks and high wildlife value, the botanical name given to this deciduous shrub attests to centuries of use by humans. The genus name, Sambucus, comes from Latin (sambūcus), from Ancient Greek σαμβύκη (sambúkē, “sambuca”), and ultimately from Aramaic ܣܐܒܒܥܚܐ‎ (sabbekha). It originates from the plant’s association with an ancient musical wind instrument of Asian origin, known as the sambuca, made from the branches of a species of elderberry. According to Wiccan lore, it was used to summon spirits. The epithet of the Pacific Northwest’s red elderberry — racemosa — refers to its unbranched inflorescence (a raceme) with multiple short-stalked flowers. The common name, elder or elderberry, is thought to come from the the Anglo-saxon aeld, meaning fire, since the hollow stems were used as bellows to blow air into the center of a fire (but don’t you dare place elder wood, also called “Witch-wood,” in the fire or it will cause it to die out, according to The Wicca Garden by Gerina Dunwich).

Most elderberry species are native to the northern hemisphere, but no matter where they grow, they’ve been used in cooking, in the making of dye or ink, and as medicine. According to folklore, elder is said to ward off and cure disease and offer protection from lightening, saddle sores and all forms of evil. As far as consuming elderberries, they are reportedly highly nutritious and not toxic when fully ripe. However, I suggest erring on the side of caution and cooking them first since unripe, bitter-tasting fruit may cause stomach upset. Cooked berries (with seeds strained out) are tart but can be made into wine, jelly, preserves, syrups, or sauces. Seeds, roots, flowers, green fruit pulp, and leaves create cyanide-producing glycosides. 

Classification
There’s been quite a bit of bickering and confusion in the literature over the classification of Sambucus species. Historically, Sambucus racemosa (native to Europe and Asia) was commonly called European red elder, while the very similar North American native Sambucus pubens (syn S. racemosa var. pubens), native to eastern North America, was known colloquially as American red elder. Some authorities have now grouped both of these red elders together under the name of Sambucus racemosa, while others have included several former species, S. callicarpa and S. pubens, as part of the subspecies Sambucus racemosa var. racemosa, which is native to the Pacific coast states. The genus Sambucus was previously placed in the honeysuckle family (Caprifoliaceae) but recently was reclassified as a member of the small Adoxaceae family, which includes Viburnum.

Sambucus racemoca
How it grows
A large, handsome, deciduous, upright perennial shrub, Pacific red elderberry rises from several tightly clustered basal stems. Pinnately compound, lance-shaped leaves with downy undersides that may grow to six inches long are striking in themselves but take a back seat when lacy, conical to egg-shaped panicles of small creamy-white fragrant flowers steal the show in late spring to early summer. A few months later, the pea-sized, berrylike fruits, known as drupes, ripen to a brilliant red.

In the wild, it may grow up to 18 feet in height and about 8 to 10 feet in width, but may stay smaller in garden situations. Though it shows a preference for partial shade, it will tolerate full sun or full shade, though the latter will cause it to look straggly as its branches reach for more light. It is moderately long-lived; upright branches become more arched with age. 

In the Pacific Northwest, red elderberry naturally occurs in moist to mesic meadows, grasslands, riparian areas, forests, canyons, ditches, and disturbed places at low to middle elevations from southern Alaska into California. In Washington and Oregon it mainly occurs west of the Cascades. 

Sambucus nigra ssp. caerulea Blue elderberry Wallowas

Fruits of the blue elderberry, Sambucus nigra ssp. caerulea. “Caerulea” means blue.

Another elderberry, blue elderberry (Sambucus nigra ssp. caerulea), typically grows larger (up to 30 feet tall) and develops bluish-purple fruits, often with a whitish coating, that are immensely important for wildlife during late summer and fall. It occurs widely within most western states in open forests and riparian areas and may be found on slopes where it helps control erosion. Plants subjected to drought may develop interesting gnarly branches and stockier trunks with age. 

Wildlife value
Elderberry shrubs provide food, cover, and nesting provisions for many wildlife species. Flowers provide nectar and pollen for butterflies, bees, hummingbirds and other pollinators. Fruits (when fully ripe) are eaten by many mammals and birds; red elderberries are the main ingredient of band-tailed pigeons’ summer diet. Some native birds and bee species use the plants for nest structure and the leaves may be used for nest material. Both red and blue elderberry are hosts for the caterpillars of the echo azure butterfly (and possibly other lepidoptera). 

Try it at home
Since elderberry plants are typically fast growing, they’re perfect for young gardens, where they can provide screening and structure overnight (well, almost). Although pruning them back can usually be done without killing them, they’re best left to do what nature intended, so be sure you give them enough space! (If you find yourself with saw in hand, remember this superstition: You must apologize three times to an elder when pruning it or cutting it down; otherwise bad luck will befall you.) 

With ample space, elderberry shrubs make stunning focal points, living screens, shrub borders or wide hedges, and provide connectivity between low perennials and tall trees, as well as erosion control along the edges of streams and ponds. Plant several to encourage more flowers and fruit.

They’re easy to grow when a few guidelines are followed. Sun: Partial shade to full sun; the more sun, the greater the flower and fruit production. Soil: Though the perfect conditions would be moist (but well-drained) rich soil near a babbling brook, elderberries can handle dryer conditions and clay soil (not sandy soil). Though they thrive in regularly irrigated areas, once fully established they are drought tolerant, but appreciate an occasional deep drink prior to and during the Pacific Northwest’s dry summers.

Grab a partner
Growing native plants with the associated species they evolved with is best, so in the Pacific Northwest consider growing red elderberry with species such as Douglas-fir, vine maple, red-twig dogwood, osoberry, thimbleberry, orange honeysuckle, goat’s beard,  fairybells, and sword and deer ferns.

Finally, there are numerous elderberry cultivars that have been developed by plant breeders looking for certain characteristics that can be maintained through propagation, such as plant size or flower or leaf characteristics. Cultivars are not natural varieties found in nature, and although some do provide well for wildlife, studies show that many aren’t as attractive and useful; their pollen, nectar and/or fruits may be deficient in nutrients, which is especially problematic for migrating birds who need high quality nutrients that provide lots of energy. And some cultivars may actually lack nectar, or their flowers may be so complex that pollinators can’t even use them. A recent study on pollinators found that the more manipulated the cultivars became, the less attractive they were to pollinators. Moreover, genetic diversity is the foundation of biodiversity, which is the foundation for healthy ecosystems. True native species provide genetic diversity; native cultivars do not.


NOTE:
An unknown species of elderberry borer has been found on elderberry plants in Washington State. Although it’s not clear from this article whether it could be a native species or an imported one, it offers information on how to monitor and manage if necessary. If the insect turns out to be non-native, here is yet another reason to buy native, locally grown plants, rather than purchasing natives or cultivars from who-knows-where that could bring in unwanted and problematic insects. 

© 2018 Eileen M. Stark 

Plants Are a Matter of Life or Death for Birds

Chcikadee feeding

Finding enough food to feed a family can be difficult or impossible when plants are mostly non-native.


I always recommend that we grow
as many native plants as we can to sustain wildlife, but to avoid overwhelming apprehensive gardeners I also mention that our yards don’t have to be exclusively native to be beneficial. Well, now there’s a number to aspire to: 70 percent native, minimum. That’s what a group of researchers have found is necessary for insectivorous birds to raise healthy young and keep their populations steady in human-dominated landscapes, the most swiftly growing ecosystem on the planet.

Their study, the first to examine the effect of non-native plants on an insectivore, looked at the connection between plants, the arthropods (insects, spiders and others) that eat and hang out on those plants, and the breeding success of one insectivorous bird species that, along with most other terrestrial birds, cannot survive without consuming arthropods. Published in Proceedings of the National Academy of Sciences, it was conducted in the Washington D.C. area by the usual suspects, University of Delaware researchers Doug Tallamy and Desirée Narango, along with Peter Marra, director of the Smithsonian Migratory Bird Center. They sought to determine how exotic plants affect songbirds’ reproductive success in urban and suburban landscapes.

Data was collected from about 150 citizen-scientist homeowners whose properties were provided with artificial nest boxes to attract paired Carolina chickadees*. Once their nests were complete, the researchers recorded life on plants within a 50-meter radius where nesting chickadees search almost incessantly for the most nutritious food they can find. During breeding season, arthropods make up more than 90 percent of their diet, which is composed primarily of moth and butterfly larvae, spiders, and Hemipterans (such as aphids and leafhoppers). During non-breeding season, chickadees will consume some plant material, but more than half of their diet is still animal-based, which may have important implications for annual survival. Throughout the year, caterpillars—rich in fat, protein and carotenoids—are an extremely important food item and essential to nestlings’ fast growth.larvae on aspen leaf

Unsurprisingly, native plants were teeming with “bird food,” while non-natives were nearly devoid of life. The reason? Most native insects need native plants because they are specialists—they co-evolved with certain plants and can feed only on them due to their chemical compositions; they cannot survive where those native plants don’t exist. 

Nest boxes were also monitored, as was the survival of parents and fledglings. Analysis of data revealed rapid declines in populations of Carolina chickadees when yards supported mostly non-native trees and shrubs. As soon as the percentage of natives falls below 70, the probability of sustaining the species drops to zero. In other words, when there is little native plant biomass, the parents either do not establish nests or they cannot locate enough food and their babies starve to death. But at 70 percent or higher, the birds can thrive and sustain their populations. The number is a baseline: The more insectivorous a bird, the higher percentage of native plants needed to support them.

Developers and property owners typically convert native plant communities into habitats composed of mostly non-native plant species. Usually chosen for some aesthetic effect or because they’re so commonly available, they are extremely poor at supporting native invertebrates at the base of the food chain and those—such as songbirds—who cannot survive without such highly nutritious prey. Non-native plants—invasive or not—appear harmless, but substantially influence ecosystems in dangerous ways. Effects that begin at the bottom of the food chain go straight up, creating so-called ‘food deserts’ for birds, which _MG_7373 sRGBmay lead to starvation and possibly local extinction. Sadly, that is the case with most yards. If we really want to help birds, we need to realize that their lives are in our hands. Small changes for us will be colossal for them.

 

 

 

Though the study focused on just one insectivorous bird species in the mid-Atlantic region, the results are applicable to migratory birds who need high quality food at stopover sites as they undertake their arduous, exhausting semiannual journeys, as well as 431 other insectivorous species (in the U.S.) that need similar support in habitats far away. Because I live in an urban area where natural cavities for cavity-nesting birds (such as black-capped chickadees and woodpeckers) are scarce, each spring our clean chickadee nest box is dutifully placed in our back yard. We have photographed mom and dad chickadees feeding their young both spiders and insects or their larvae, and for the past five years every chickadee nestling has fledged (and, as far as I know, lived to adulthood). Nonetheless, the study mentions that when spiders are a sizable part of insectivorous birds’ diets, it’s due to non-native vegetation. I can’t do much about the non-natives in my neighbors’ yards, but I can replace exotics in mine. 

Spider Treat

How we can help
Reading about shocking, dramatic declines in insects and insectivorous birds, as well as countless other creatures in trouble due to human actions can be disheartening, but this study proves that when we (and our neighbors) prioritize  regional native plants at home that have great capacity for supporting biodiversity, we can make positive change for them and ourselves as well, since supporting wildlife can be very rewarding. Clearly, countless lives depend on how we garden and which plants we choose. And the little invertebrates themselves—part of the intricate web of life—have value in and of themselves.

Quercus (oak), Prunus (wild cherry), Salix (willow), Betula (birch), Populus (aspen & cottonwood), and Acer (maple) were among the top performers on Tallamy’s list pf plants found to host lepidoptera (moth and butterfly larvae) in the mid-Atlantic states. So instead of a ginkgo tree, opt for a native oak tree. Instead of a flowering cherry hybrid, choose a native cherry (in the Pacific Northwest: Prunus emarginata). Instead of Japanese maple, plant native maple (in the PNW: Acer macrophyllum, A. circinatum or A. glabrum). Some woody PNW trees and shrubs known to host lepidoptera include native dogwood (Cornus spp.), western red cedar (Thuja plicata), serviceberry (Amelanchier alnifolia), elderberry (Sambucus spp.), oceanspray (Holodiscus discolor), western mock orange (Philadelphus lewisii), honeysuckle (Lonicera spp.), and herbaceous plants like checker mallow (Sidalcea spp.), monkey flower (Mimulus spp.), and milkweed (Asclepias spp.). Choose species that would have historically grown in your locale, whenever possible, and add associated species—those that would grow with them naturally—as well. The 30 percent leeway allows us to grow some non-natives that we love and/or food for the kitchen table.

Chickadee hungry

Regional native plants are critical for supporting wildlife like insectivores, including chickadees.

 

_____________________

* Carolina chickadees, which are very similar in appearance to black-capped chickadees, are almost entirely insectivorous during breeding. Although they are fairly common across their range, their populations declined by 16% between 1966 and 2019, according to the Cornell Lab of Ornithology.

 

© 2018 Eileen M. Stark

To leave a comment, click on post’s title

Gardeners Can Help Combat the Climate Crisis

Hermit warbler


The man with a pained expression said that he was worried about the birds.
And all I could do was nod.

During the Q&A following a presentation I recently gave in Portland, many attendees expressed concern about climate chaos. One mentioned the change in hardiness zones, while another mentioned driving north into Washington State and seeing countless trees apparently near death. Others wondered if they should consider modifying their plant selections since studies show that native plants are on the move, northward or to higher or lower elevations. But of course their populations can’t shift fast enough, and at some point in the not-too-distant future, they’ll run out of places to go. Ecosystems will collapse, especially in extreme environments, and their innocent members will suffer.

I cringe whenever the subject of dealing with anthropogenic climate change comes up because I believe we ought to be fighting it in any and every way we can, not giving in. I have to hold back tears when I read news accounts that document the devastating and irreversible changes that are already taking place. Climate change is the most pressing environmental problem of our time (besides its close cousin, overpopulation) and every human ought to be troubled by it, especially because it could have been remedied 30+ years ago.

Needless to say, we must drastically cut greenhouse gas emissions if we’re going to keep climate warming at a safe level (below 1 degrees celsius), and we need to do it quickly if we want to avoid catastrophic change. As individuals, we can drive and fly much less (walk or grab a bike or bus or train) and eliminate or at least cut our use of meat and other animal products, toward a much healthier plant-based diet.

We also need to plant trees, price carbon emissions, subsidize clean energy and close coal plants and stop drilling, avoid plastics and palm oil, and require “zero-deforestation” supply chains, among other things. 

Removing carbon dioxide, the primary warming gas, from the atmosphere is as essential as curtailing emissions; the National Academy of Sciences estimated that ten gigatons (one gigaton is a billion tons) of CO2—about one fifth of all emissions—could be taken from the air each year, simply by growing more trees. In addition, taking much better care of the soil could have an immense impact, since the planet’s soils were once a gigantic carbon sink that have lost between 50 and 70 percent of their original carbon stock. It can be put it back where it belongs if we restore degraded and eroded land and curtail deforestation as well as destruction of peatlands.

Try it at home

One of the most immediate and tangible ways we can help fight climate change as individuals is to conserve native habitat—by keeping it intact and healthy—and restore native habitat. It makes climate sense and anyone with a yard can do their part at home. It will also build a greater buffer for plants and animals to survive changing conditions. Here are a few tips:

♦ Lose the lawn (or at least most of it). Of the 42 million acres of lawn in the U.S., a massive chunk could be replaced with regional native plants. Besides lawn being a wasteland where other, more positive things could grow, lawns are maintained annually with 300 million tons of synthetic, fossil fuel-based fertilizers that, besides polluting waterways, add to air pollution as they break down. The same goes for fossil fuel-based pesticides. And two-stroke gasoline-powered lawn equipment burns more than 800 million gallons of gasoline (and spills, literally, 17 million gallons) each year while their products of combustion cause high levels of hazardous air pollutants and CO2. If you must have lawn, mow high, don’t water, and leave grass clippings to fertilize the soil and add carbon.

♦ 
Use push mowers, rakes, brooms and other no-emission tools. They take a little more effort than motorized tools, but can’t we all use a little more exercise?

♦ Plant more native trees and shrubs. Due to their size and typically long life spans, trees and large shrubs—particularly those that are long-lived—remove more heat-trapping CO2 from the atmosphere than other plants. Whenever possible, choose plants from the native plant community local to your area to help them thrive in changing times. Plant communities are, essentially, loose associations of interdependent species that belong together because they’ve adapted, over thousands of years, to have similar needs and tolerance for the existing soil type, topography, precipitation, humidity, sunlight, and wildlife of an area. They are defined by the species that are most obvious (largest or the most abundant) in a given environment. Besides looking good together above ground, the plants often have symbiotic relationships, such as by sharing moisture and nutrients underground, with the help of mychorrizae. They communicate with chemicals through the soil and above ground and interact through competition and other ecological relations. To achieve summer shade and reduce or eliminate the need for air conditioning, grow large trees on the southwest or west side of your house (10 to 30 feet away) to block hot afternoon rays (second best place is the southeast or east side). Appropriately placed trees also offer protection from winter winds, which can help with home heating._MG_1052 Big-leaf maple branch

♦ Grow your own fruits and vegetables organically. Besides being incredibly healthful, fresh, and tasty, home edible gardening eliminates the fuel used to transport food. If you can’t grow your own, buy certified organic foods whenever possible. No-till organic farming is the best agricultural practice for wildlife and for sustainable land management, particularly through the enrichment of soil microbial activity that increases mineral exchange between plants and soil, which promotes carbon fixation. Since soils are the basis of food production, preserving their quality is critical, even if organic farming is not the most productive.

♦ Compost at home. Organic waste that decomposes in anaerobic landfills creates methane, a heat-trapping gas that is 23 times more potent than CO2. But when we compost in the presence of oxygen, methane production is minimized. Composting yard clippings (without weed seeds), leaves and vegan food scraps (roughly a 1:1 ratio of “greens” and “browns”) produces a nutrient-rich soil amendment that reduces the need for fertilizers while helping the soil store more carbon. Compost made with only fallen leaves also produces a nice soil amendment that’s good at improving soil structure and microbial activity.

Keep your soil healthy. Allow fallen leaves, bark, twigs, lichen, and downed wood to remain on soil to protect it and add nutrients.

 

© 2018 Eileen M. Stark

To leave a comment, click on post’s title

Pacific Northwest Native Plant Profile: Fairy bells (Prosartes spp.)


When you notice the enchanting, pendant springtime flowers of fairy bells
, you can almost imagine a tiny fairy jingling their corollas to create a magical sound that only she can hear. An excellent choice for moist woodland gardens or shaded perennial beds, fairybells’ genus is a member of the lily family. It had previously been classified within the Asian genus Disporum, but further analysis found that North American fairybells differ in several ways and in 1995 were ushered into the Prosartes genus. “Prosartes” means “fastened” in Greek, and refers to attachments of the fruit parts.

There are six species within the Prosartes genus, and we are fortunate that three grace the Pacific Northwest, west of the Cascades: Prosartes hookeri, P. smithii, and P. parvifolia. The latter is a rare species endemic to part of Oregon’s Siskiyou Mountains; it had always been considered a variant or hybrid of P. hookeri but recently came into its own. According to the California Native Plant Society, it is “threatened by trampling, logging and associated road usage, and road maintenance.”

Of the remaining two, the more common Prosartes hookeri (Hooker’s fairy bells, pictured above) is an upright deciduous perennial with lovely horizontally spreading branches, whose alternate leaves are arranged parallel to the ground for maximum light absorption. The upper stems and veins on the undersides of leaves are somewhat hairy. Spring blooming, bell-shaped flowers that often occur in pairs (or singly or in trios) at stem tips, are protected from rainwater by the pointed tips of leaves which channel tiny streamlets. Later in the year, oval berries, slightly tri-lobed, ripen to a bright red. They are edible, but rather bland and seedy; it’s best to leave them for wildlife or allow them to naturally propagate.

Prosartes smithii

 
Prosartes smithii (Smith’s fairy lantern, shown above) is similar, but its leaves are hairless, and its slightly larger and more cylindrical flowers (that only flare slightly at the tips) hang in clusters of two to five from the underside of stems. Their fruit is slightly tri-lobed and ripens to a golden-orange (pictured below).

How it grows
Fairy bell plants grow in moist, shaded forests or openings, from low elevations up to about 5,000 feet. Prosartes hookeri naturally occurs in British Columbia and throughout much of western Washington and Oregon, as well as northeastern Oregon and parts of eastern Washington, northern Idaho and northern and central California; in addition there is a disjunct population in Ontonagon county in Michigan’s Upper Peninsula, where it has been classified as endangered. Prosartes smithii has a smaller range—from southern Vancouver Island to Washington’s Olympic peninsula, in Oregon mainly west of the Cascades, and in northern California near the coast.

Prosartes hookeri fruit


Wildlife value
Flowers attract native bees and possibly other pollinators. Fruit ripens in mid to late summer or early fall and is eaten by ground-feeding birds such as robins and towhees, as well as small mammals like squirrels and chipmunks. Plants provide shelter for insects and other little ground dwelling creatures. 

Try it at home
Fairy bells are charming, easy-to-grow plants that ought to be grown more. Because their roots are rhizomatous, they will eventually create a small thicket, but they may be the shyest rhizomes I’ve ever encountered, at least in my yard (which isn’t exactly an intact forest): Velocity of spread is a reluctant crawl (so don’t worry about them “taking over”). Seeds do seem to propagate easily after a few years, but for these plants that is definitely an asset—I can’t imagine not wanting a lot of them!

Because they typically stay under 3 feet tall, they’re perfect a few feet in from pathways or in the front to middle of shaded beds, and although they benefit from a little bit of dappled sunlight, their tolerance for full shade seems to be fairly high. Place them, when possible, in the duff of mature trees. Leafy and woody debris is very important in the forest, and should be allowed to accumulate and decompose on the soil at home as well, since leaves, cones, fallen branches and twigs slow moisture loss and provide habitat as well as nutrients. If your soil is poor and lacking in organic matter, or if the top soil is shallow, add some low-nitrogen compost as mulch (leaf compost is good) after planting and allow whole leaves and such to continually accumulate on top to create more humus.

The leaves of Prosartes species are immune to the ravages of slugs and snails, which reportedly eat the fruits and dutifully disperse the seeds. They have quite deep (and delicate) roots, even when only a few leaves are present, so take care if you want to transplant seedlings. Those deep roots make me think that they may be more resilient and drought tolerant than we give them credit for. 

Grab a partner
Both Smith’s and Hooker’s fairy bells enjoy the company of others in the Western hemlock/Douglas-fir or coastal redwood plant community, including red alder, vine maple, osoberry, evergreen huckleberry, inside-out flower, oxalis, alumroot, trillium, sword fern, deer fern, salal, vanilla leaf, piggyback plant, foam flower, and many others.

Prosartes species are wonderful substitutes for non-native invasive ground covers such as Vinca and English ivy.


© 2018 Eileen M. Stark

To leave a comment, click on post’s title

The Best Mulch is Green

Inside-out flower and star-flowered false Solomon's seal mingle in a mostly shady site.

Inside-out flower and star-flowered false solomon’s seal, both PNW natives, mingle in a mostly shady site.


In an intact ecosystem, nature protects bare soil
with native plants (or decaying plant matter) that offer a protective umbrella aboveground and keep soil in place with their roots. In disturbed areas, nature can’t count on the indigenous plants that fell under the plow 200 years ago or were destroyed more recently, so it works with what’s left: Weedy plants brought in, intentionally or not, from other ecosystems or other continents, some of which are so invasive that they destroy wildlife habitat. That’s not a good thing, so we either pull the weeds and leave the soil bare (which can cause soil degradation and exposes more weed seeds to light), or spend many hours every year spreading wood chips, bark dust, rocks, or — heaven forbid — nondecomposable plastic sheeting or rubber mulch to try to keep them at bay. But there’s a much better way that’s good for biodiversity and your back.

Before I get to that, keep in mind that some mulch applications can be beneficial—as in compost applied to veggie gardens that need lots of nutrient-rich organic matter and help retaining moisture, or a couple of inches of aged wood chips to help new trees and shrubs get established. Although a layer of wood chips won’t control erosion on slopes or provide wildlife habitat, it also won’t destroy your soil if it’s not tilled in, so it has its place. Let’s say you’ve planted some new trees. Wood chips spread circumferentially around the trees a little past the drip line will suppress weeds, allow water infiltration, minimize water loss (when applied while the soil is still moist), and encourage microbial soil life (but be sure to keep all mulches at least six inches away from trunks or main stems to prevent rot). However, applying additional mulch in the following years in the same place provides no benefits since the trees’ feeder roots will have grown way past the circle of mulch, in some cases eventually reaching double the diameter of the tree’s canopy (the majority of trees don’t have tap roots). As your plants become established and if they’ve been spaced appropriately and leaf litter is allowed to accumulate, there won’t be a need for any kind of trucked-in or bagged mulch. And, you won’t have to worry about whether your mulch application entombs bees and other insects that nest in the ground.

A low-nitrogen compost, such as leaf compost, ought to be used in place of wood chips, especially in areas where soil is degraded, such as soil that was once trapped under concrete. But remember that thick applications of compost can smother beneficial insects and get in the way of ground cover plants on-the-go, so using whole, unchopped leaves is best for eco-functional, “real” gardens.

The worst offenders
Fine wood chips or bark “dust” tend to compress into a dense, impermeable mat that prevents rainwater from soaking in and may even blow away soon after application. Rock or gravel mulch is devoid of life, adds absolutely nothing to the soil, makes it impossible to add organic matter later on, and in sunny spots will either reflect or absorb heat (depending on the lightness or darkness of the rocks)—not a good thing to do to plants, most of which can’t take the heat. Rock or gravel mulch also make it harder to get rid of weeds and while it might be okay in rock gardens, it is not beneficial for most other plantings and does not prevent weeds. Lastly, any thoughts of using plastic “weed liners” or “landscape fabric” should be quickly consigned to oblivion since they prevent moisture from reaching plants’ roots and soil life, and contribute to the enormous glut of extremely problematic plastic on this planet.

What do wood chips, rocks and plastic have in common? They’re unnatural. Sure, they may keep weeds down temporarily, but they also smother beneficial arthropods that live in or on the soil and make it impossible for ground feeding birds, who instinctively rummage through fallen leaves, to find food. They can never create habitat that plants and animals need. When in doubt, ask “What would Nature do?” Her answer certainly wouldn’t be to finely grind up trees or roll out the plastic.  

A living mulch
To add wildlife habitat and connectivity, increase diversity, protect the soil, sequester carbon, mitigate storm water, keep weeds down, and possibly control erosion (depending on the plant species), think green—that is, living, growing plants. What may first come to mind are low, ground-hugging plants, but taller plants also contribute benefits as well. A densely layered, fully planted garden — from ground cover and small shrubs, to tall shrubs and trees — will shade out weed seedlings and minimize the soil nutrients they need, weakening their chances at prospering. It will also be much better at carbon sequestration than lawn or garden beds made up mostly of mulch.

Arrange big trees and the understory — shrubs and perennials — in a layered effect, to create connections and conditions that help to cover the soil. When plants touch one another and overlap a bit, or — in the case of ground covers — cling to the ground and spread (a lot or a little, depending on your needs and the size of your yard) we mimic nature and lessen maintenance tasks. A living mulch looks much better, too. And simply allowing leaves and other dead plant material to stay on bare soil will add nutrients and organic matter to the soil as they decompose.

Placement is important 
Plants are often placed too far apart or are placed appropriately but then sheared into odd shapes, leaving the soil bare. Or they’re placed so that when they reach mature size they grow into walkways or houses and the blame is placed on the plant: The “it’s overgrown” quip often results in plants butchered beyond recognition and loss of habitat. The best placement allows plants to assume their natural shapes and habits and lets them touch and overlap a little, both above and below ground. When we arrange plants so that their roots occupy most of the soil, it becomes more difficult for new weeds to take hold. One caveat! Do leave some soil bare, particularly in open areas, because 70 percent of native bees nest in the ground — they burrow into bare earth like ants do — and they cannot nest in thick layers of loose mulch or thick, lush ground cover. So, don’t cover every square inch of your property; everything in moderation.

Planning for change
When planning your garden and before you draw up a planting plan, it helps to do a birds-eye-view sketch, drawn to scale, with just general plant material or plant groupings. One example: A large tree to shade the southwest side of your house, shrubs that can handle partly shady conditions beneath the tree, and woodland perennials/ground cover plants to blanket the soil. Then choose the plant species that fit the conditions and size constraints. It’s essential to research mature widths as you choose plants (especially shrubs), so that their placement won’t be too close or too far apart. Check at least two sources to be sure and don’t always rely on plant tags, which may or may not be correct (I find that most shrubs get bigger than tags say). For continuous cover, place them a little closer than their mature width apart, giving shrubs and trees enough space so that they don’t infringe on walkways and neighboring properties and such. Try to choose plants that occur in natural communities within your area so that they will be able to communicate through the soil, as well as air, to trade nutrients and secrets that helped them survive together for thousands of years. And while sun-loving plants should be arranged so that they don’t shade each other out, it’s okay to let plants compete a little. For ground cover plants that need shade, allow your larger plants (that will eventually supply shade) to grow a few years before adding the ground cover. Or, start with ground cover that likes some sun, and then replace it later on when you’ve got enough shade. The latter approach works best with slow growing trees like Oregon white oak; the former with speedy growers such as Douglas-fir.  

Sedum spathulifolium meanders along a stone stairway.

Sedum spathulifolium meanders along a stone stairway.

Gardens are ever-changing, just as Nature is, so it should be no surprise when they reject the status quo and slowly transform and shift over time: There may be early successional plants (“pioneer species”) that establish quickly and help to create a quick green mulch that competes with early weeds. After a few years they may give way to the next succession of plants that come later. Plants that move, either by self-sowing or via underground roots, are usually trekking to a place that suits them, and we can learn from their relocations. For example, if you’ve planted a sun-loving perennial in a partly shady spot, you won’t need to think too hard about why it’s sown itself in a sunny pathway. Of course, there will be times when you’ll need to do some editing so that your design continues to please and function well.

Native ground cover to consider
Below are a few low ground cover type plants (those that will spread or self-sow in the right conditions) for the Pacific Northwest (west of the Cascades) in sunny to partly sunny spots and shadier areas. Besides light needs, aways check moisture requirements and find out whether it is native to your specific area. Consider growing several species in the same area so that they mingle into a tapestry that creates texture and prolongs bloom time. Some (*) are quite assertive in certain conditions, so may not be best for small properties. Also keep in mind that most smaller plants will self sow and fill in spaces eventually, such as columbine (Aquilegia formosa) and fringe cup (Tellima grandiflora). Finally, don’t forget about moss in mostly shady places—it’s great on compacted soil and rocks, provides wildlife habitat and nesting material for some birds, sequesters carbon, helps control erosion, and doesn’t need mowing like lawn does. 

For mostly sunny sites:

Arctostaphylos uva ursi (kinnikinnick)
Campanula rotundifolia (common harebell) *
Carex obnupta (slough sedge)
Ceanothus prostratus (prostrate ceanothus)
Erigeron glaucus (seaside daisy)
Penstemon cardwellii (Cardwell’s penstemon)
Sedum oreganum or S. spathulifolium (sedum)
Sisyrinchium idahoense (blue-eyed grass)
Viola adunca (early blue violet)

For shadier, woodland sites:

Achlys triphylla (vanilla leaf)
Asarum caudatum (western wild ginger)
Dicentra formosa (western bleeding heart) *
Mahonia nervosa (Cascade Oregon grape)
Maianthemum stellatum (starry false Solomon’s seal)
Maianthemum dilatatum (false lily of the valley) *
Oxalis oregana (wood sorrel) *
Vancouveria hexandra (inside-out flower)
Viola glabella (stream violet)

Early blue violet (Viola adunca) , a host plant for fritillary butterflies (three of which are listed federally as endangered species), gently self sows.

Early blue violet (Viola adunca), a host plant for fritillary butterflies (three of which are listed federally as endangered species), gently self sows in my back yard.


© 2018 Eileen M. Stark

Pacific Northwest Native Plant Profile: Pacific Madrone (Arbutus menziesii)

Arbutus menziesii bark

Although it looks exotic, Pacific madrone — a beautiful broadleaf evergreen tree with a captivating and distinctive presence that transforms with the seasons — is endemic to the Pacific coast. Its exquisite attributes — fragrant flower clusters, brilliant berries, glossy leaves, twisting branches, rounded crown, and rich cinnamon-red bark that peels from a satin-smooth trunk — please all of our senses. And for the wild ones attracted to this unique gem, its ecological gifts never disappoint.

Madrona (after madroño, the Spanish name for a Mediterranean “strawberry tree”) is the name admirers in Washington give this member of the Ericaceae (heath) family, while those in California and Oregon call it madrone or Pacific madrone. British Columbians simply use the Latin genus name, Arbutus. (The epitaph, menziesii, is named after the naturalist Archibald Menzies, a naturalist for the Vancouver Expedition that explored the Puget Sound region in 1792.)

How it grows
Pacific madrone is a large, long-lived tree that naturally occurs in a climate with mild, wet winters and dry summers, although rainfall varies substantially within its range, from the east coast of Vancouver Island in British Columbia, southward through Washington and Oregon (west of the Cascades) to San Diego County. It is often found on rocky soils and other coarse soils that retain little moisture, including the dry foothills, wooded slopes and canyons of parts of California (at low to mid-elevations); within coastal redwood and mixed-evergreen forests of California and Oregon; on dry ridge tops and slopes at low to mid-elevations along the east side of the Coast Ranges and in the Siskiyou Mountains; on warm, dry, lowland sites west of the Cascades (within Douglas-fir/western hemlock forests or Oregon white oak or tan oak woodlands); and — furthest north — near sea level on rocky bluffs and low elevation slopes. Within mixed hardwood forests — that may or may not have an overstory of conifers — its tolerance to shade varies with age. While madrone seedlings do best in partial shade and young trees can handle quite a bit of shade, tolerance decreases as trees age and for those at the northern end of this species’ range. Older trees need good light to survive and often can be found  growing at an angle, twistily and desperately reaching for the sunlight that helps ensure a long life.

Wildlife value
Wild ones are drawn like a magnet to madrone trees year round. In springtime, lovely creamy white, waxy, urn-shaped blossoms provide nectar for hummingbirds, native bees, and other pollinators.

Arbutus menziesii in flower

 

Clusters of bright red berries — that ripen in autumn and may persist into early winter — feed many bird and mammal species, including American robins, varied thrushes, band-tailed pigeons, cedar waxwings, northern flickers, quail, raccoons,  squirrels, mule deer, and bears.

Arbutus menziesii (fruit)
Habitat is provided for a variety of insects, including echo blue and brown elfin butterfly caterpillars who nibble on leaves and in turn provide dinner for insectivorous birds. Shiny, leathery leaves generally remain on branches for two years, after which they turn from vivid green to burnt orange and settle to the ground where they provide a natural mulch that protects soil microorganisms and little ground-dwelling creatures. Lofty roosting and nesting habitat is also supplied, and live trees with rotting wood offer cavities for insects as well as birds that nest in trees, such as woodpeckers and chickadees. Dead and dying trees provide even more dead wood for cavity nesters and the silent decomposers that function as nature’s recyclers.

Conservation
Unlike other trees, madrone’s fine roots have adapted to search deeply into rock fractures for stored water or “rock moisture,” making it an important plant for stabilizing slopes and cliffs and preventing landslides. In addition, it’s a valuable component of many vegetation types; for example, in mixed conifer forests like Washington’s Coast Range ecoregion (Douglas-fir/western hemlock/madrone), it provides a mid-canopy story, essential for the structural diversity of the forest.

It ought to be preserved for its own sake, for the wildlife that use it, for the ecosystems of which it’s an indelible part, and, needless to say, for those of us who revere its spectacular beauty.

Tragically, the species is currently in decline throughout most of its range, for several reasons. First, sprawling development in its native habitat has stolen many mature specimens. Though tough and drought tolerant (or more precisely, drought dependent), its roots are extremely sensitive to drainage changes, compaction, grade alteration, and other soil disturbance. Because madrone belongs and successfully grows in regional arid soil conditions that many trees cannot, landowners and developers ought to protect and save this tree at all costs.

Under natural conditions, madrone depends on intermittent fires that limit the conifer overstory (typically Douglas-fir trees). Older madrone trees can survive fire and will sprout quickly and profusely afterwards due to carbohydrate reserves within existing roots. In addition, their fruit produces many seeds, which sprout on exposed soil readily after fire. But when humans suppress and prevent natural fires, the prolonged absence of fire and consequential shade—especially on moister sites—may cause madrone trees to die.

Death or damage may be also caused by several pathogens, including a foliar fungus (Nattrassia mangiferae), commonly called “madrone canker,” that reproduces via spores and causes dieback, blackening of branches, and cankers that may spread to the trunk. A root rot, Heterobasidium annosum, can also cause serious damage. Unlike fire, “disease decreases starch accumulation in the root burl, so that declining trees are less able to resprout after the aboveground portion of the tree is killed by disease.” But prevention is possible: Susceptibility to disease is exacerbated by unnatural environmental stresses such as regular summer irrigation and the use of fungicides and fertilizers. Essentially, spores are carried by water, fungicides kill beneficial mycorrhizal fungi (symbiotic associations between the roots of most plants and fungi, which protect roots from pathogens), and studies suggest that increased soil nitrogen disrupts the mycorrhizal associations between beneficial fungi and tree roots, which in turn reduce the supply of micronutrients and water to trees, thereby increasing susceptibility to disease. Madrone trees host a large number of types of mycorrhizal fungi and have been called “a major hub of mycorrhizal fungal diversity and connectivity in mixed evergreen forests” that play a large role in forest regeneration by promoting resilience to disturbance below ground.

Madrone is also affected to a small extent by sudden oak death, a disease caused by a water-borne, fungus-like pathogen, Phytophthora ramorum, which arrived in the U.S. via live plant imports of exotic ornamentals to nurseries; it is increasingly spread by human actions, including climate chaos.

Try it at home
Despite all these threats, a madrone in the wild can live hundreds of years and may grow very large — over 100 feet tall — although in cultivation they rarely exceed 50 feet after many decades. Young trees often grow fast (up to several feet per year), while older trees typically grow at a much slower pace. In the southern, drier and warmer part of its range it grows more slowly and stays smaller.

Supplemental water after establishment is highly detrimental: Madrone cannot tolerate slow drainage, standing water, or regular irrigation during summer, which makes it susceptible to disease (as do fertilizer applications). While it has a bad reputation for being difficult to establish and isn’t for the fussy gardener, knowing what this tree needs and cannot tolerate will help ensure success. In my experience, there are seven essentials to successfully growing this tree:

1. Figure out if it historically occurred in your area. Though it’s not absolutely essential that this species likely grew in your immediate area 200+ years ago — especially since much change has occurred since then — because this tree can’t just be stuck in the ground anywhere, look to nearby natural areas to see if it might have naturally occurring relatives nearby in similar soil. In its northern range, it’s usually found growing on soils derived from glacial sands or till and gravels, while in the southern and middle parts it reportedly grows on soils derived from a variety of materials.

2. Be sure your site has the right conditions: Fast-draining, non-compacted, slightly acidic soil (pH a little less than 7), and a bright location with at least a half day of sun in northerly locations. However, seedlings need partial shade to establish, so if you have mostly sun, shield them from hot afternoon rays until well established. Site plants on a slope or area that’s elevated above the surrounding area to facilitate drainage. In my yard I tried twice to grow one-foot-tall saplings in the lowest part of my yard with sad results, despite digging in extra small rocks and gravel to increase drainage. My third attempt, which I grew myself from seed, I planted atop a short, south-facing slope, again with extra rocks and gravel. I believe that the increased drainage was what was needed; however, the seedling was also very small — only three inches tall! — so that also may have helped. Note: If you live in a very warm, dry area (such as parts of California) be sure to plant this tree on a north-facing slope, rather than in hot, direct sunlight.

3. Start with very small saplings, no more than a foot tall, as older trees do not transplant well. Once they “take,” however, young trees grow quite fast (in my yard, over a foot a year). 

4. Buy plants propagated from source material that originated as close as possible to your site. Using such “local genotypes”  helps ensure that you get plants that are well adapted to your area and preserves the genetic diversity that helps plants (and animals) adapt to changing conditions. Ask growers and nurseries about their sources if you’re unsure.

5. Plant saplings in the fall, just as winter rains begin, since they establish best when they can establish roots first, then put on aboveground biomass. You can plant them in the spring, but you’ll end up worrying about how much or how often to water; during the moist days of autumn you can just let nature decide. Do not add large amounts of organic matter into the soil that could inhibit the moisture-seeking roots from penetrating to mineral soil, and do not add fertilizers that can disrupt the mycorrhizal associations between beneficial fungi and roots. Never apply fungicides or other pesticides. If you have them, add a shallow layer of acidic Douglas-fir needles since they naturally grow near madrones.

6. Give them space. To allow them to get to their full and most beautiful form, plant them at least 20 feet apart and at least 25 feet away from tall trees, especially conifers that produce deep shade. Also try to minimize soil compaction, which can be detrimental.

7. Irrigate sparingly, and preferably only during the first summer or two. During my little tree’s first spring and summer it was unusually warm and dry, and I noticed some wilting of leaves on especially warm days. I carefully (and nervously!) watered it with tepid tap water (or rain water I had collected) in the mornings around its base and outwards a few feet, keeping the leaves and stem completely dry. I did this only a couple of times a week when heat was predicted, and by the end of the summer it was in fine shape and had grown well over a foot in height. During the second summer I left it on its own, and when no wilting of leaves occurred it became clear that the little tree was self-sufficient. After another foot of growth was added, I was able to fully exhale. Sometimes a little wilting of leaves isn’t serious: when cooler nighttime temperatures return the tree may bounce back, but you’ll have to be the judge at your particular site.

Baby madrone

Baby Madrone, just 4 months after planting as a 3-inch-tall sapling. [Update, 2024: At around 9 years of age, Ms. Madrone is now 15 feet tall.]

 

 
Grab a partner
It’s best to match madrones with other species that are compatible below ground—those that have similar needs and mycorrhizal associations and that would naturally occur together in nature (if you already have some non-natives that you want to keep, be sure not to grow any that need summer irrigation nearby). Which native “associated species” you choose depends on what part of the region you live in.

Madrone most commonly rubs shoulders with mixed-hardwood tree species that often have some conifer overstory (without completely shading them).  A member of the Douglas-fir/tanoak forest, madrone makes up the secondary canopy, while Douglas-fir (Pseudotsuga menziesii) with tanoak (Lithocarpus densiflorus) typically create an overstory. Less commonly, madrone mingles with coast redwood (Sequoia sempervirens) along the northern California and southern Oregon coast, and with western hemlock (Tsuga heterophylla), Oregon white oak (Quercus garryana var. garryana), and Pacific ponderosa pine (Pinus ponderosa var. ponderosa) throughout much of its range. Washington’s San Juan Islands’ open woodlands support madrone with Douglas-fir and fescue (Festuca spp.), as well as other species such as lodgepole pine (Pinus contorta), Oregon white oak (Quercus garryana), and Rocky Mountain juniper (Juniperus scopulorum). In British Columbia, Pacific madrone grows alongside lodgepole pine. Other tree species associated with madrone include sugar pine, white fir, California black oak, giant chinquapin, bigleaf maple, bitter cherry and California laurel, according to the U.S. Forest Service. Small trees/large shrubs commonly associated include vine maple, black hawthorn, red-twig dogwood, willow, hazelnut, and red elderberry. Smaller shrub associates include manzanitas, Oregon grape, ceanothus, salal, oceanspray, poison-oak, gooseberry, wood rose, snowberry, huckleberry, and thimbleberry.

A. menziesii with oaks

Madrone mingles with Oregon white oak, aka Garry oak (Quercus garryana), in parts of its range.

 

Propagation
Pacific madrone are fairly easy to grow from seed. Collect fruit soon after it ripens, generally early to mid-fall. Because one berry can have up to 20 seeds, you won’t need more than one if you just want to grow a few trees.

Separate the seeds from the pulp of a ripe, red berry (if it has dried, soak it overnight to help release the seeds from the pulp). Place seeds in a small bowl of water for 15-20 minutes; discard those that float and allow those that sink to dry in a cool place out of sunlight. Dry seeds may be viable for a couple of years if stored properly in a cold, dry place. Place seeds on top of a fine seedling mix in autumn, either in a pot outdoors or in the soil where you want a tree to grow, and cover just slightly. I like to grow them in pots so I have a little more control, but I’ve had success both ways. If you choose to use pots, keep them moist but not wet, and keep them away from slugs and snails.

Madrone seeds reportedly are able to maintain dormancy for long periods (“scores of years”) in the soil, but when conditions are just right — cold but above-freezing temperatures and adequate moisture — dormancy is broken in late winter/early spring after cold stratification has weakened the seed coat. At that point pots should be moved into a somewhat warm (if possible), bright location, but with little direct sunlight—seedlings establish best in partial shade and will grow fairly slowly. Keep them moist, but not saturated. After they have developed their second or third set of true leaves they may be moved to bigger pots with fast-draining soil (I like to use a mix of sterilized potting soil and small gravel), handling them by their expendable first set of leaves, not their delicate stems. Water them when the top inch of soil is dry; I find it’s hard to overwater with fast draining soil, but do give them time to dry out slightly. Plant them out when they’re 3 to 10 inches tall, preferably in autumn, in the conditions described above. Don’t attempt to relocate them.

 

© 2017 Eileen M. Stark

To leave a comment, click on post’s title

A Little Bird Tells Us About the Necessity of Native Plants

Chickadee with larva
It’s often noted that native plants and animals depend on each other
because the two evolved specialized relationships together over thousands of years, but that’s a basic explanation that doesn’t offer any details. I’ve often wondered about individual animal species and to what extent native plants are essential to them. I watch ladybugs devouring aphids on native perennial, shrub and tree leaves, warblers foraging for insects in various shrubs and trees, and black-capped chickadees bringing squirmy larvae to their hungry nestlings. But how much do birds really benefit when we choose to grow natives?

To my delight, a new study that focuses on one insectivorous bird species—the Carolina chickadee (Poecile carolinensis)—was recently released in Biological Conservation. Chickadees—whether they’re Carolina, Black-capped, or Chestnut-backed—are fairly common backyard species that, like most birds, don’t reproduce on seeds and fruit but instead eat and feed insects to their young. The study’s authors evaluated regional native plants, but also those that originated outside North America to see if they were a limiting factor for this particular species’ ability to effectively raise babies. Their results prove that non-native plants reduce the quality of habitat for Carolina chickadees by not providing enough food for their young.

Insects are crucial
It is the living environment—including insects—that sustains us and every other species. Herbivorous insects make up more than a third of the world’s animals, and their role is indispensable: By converting plant material to protein, they are nature’s only way of getting plants’ energy into animals who don’t eat plants directly, as well as into the animals who eat the ones who feed on insects.

Most herbivorous insect species are called specialists, meaning they can’t choose what they eat. Their menu is short: They must rely on only certain types of plants (that they evolved with) which have certain chemical compositions that support them, and can’t exist where those plants don’t exist. A well-known example is the monarch butterfly—an insect whose larvae can only feed on native milkweed plants—but there are countless others. If you already recognize the charms of regional native plants and have witnessed how growing them attracts more wildlife to your yard, all of this comes as no surprise. Native plants host and support more native herbivorous insects and, consequently, more birds and other wild ones.

Egg cluster for Baby

In addition to insect larvae, occasionally parents feed adult insects or clusters of insects eggs (shown here) that are most likely found in native plants.

The study
During the study’s two-year survey in the Washington, D.C. area, the research team correlated the birds’ diets to the plants they forage in. Using 97 suburban yards, they determined the species and origin of each tree and shrub, then checked the leaves of 16 plants at each site for caterpillars while tracking which plants received the most foraging visits from chickadees. Nest building in and near each yard was also examined through- out the chickadees’ breeding period, roughly April to early June on the east coast. Data revealed that these birds were more likely to nest in yards with native trees and shrubs than in yards with ornamentals that evolved outside North America. The native trees used the most included oaks, elms, cherries, and maples due to their ability to support the larvae of lepidoptera (butterflies and moths) and sawflies, which are essential for rearing young chickadees. Baby chickadees (and other birds) need a lot of food to survive: Previous research has shown that these busy parents need to collect 5,000 to 9,000 bits of food (depending on the clutch size of the brood) per nestful of chickadees, plus feed themselves!  According to the Cornell Lab of Ornithology, “during a lodgepole needle miner [an insect that can kill trees] outbreak in Arizona, one chickadee was found with 275 of the tiny caterpillars in its stomach at one time.”

The native connection
Chickadees are generalist foragers, meaning they’ll look for food nearly everywhere, not just on certain plants. They will forage in non-native plant species but won’t find much, since few host the food they need. In my experience, black-capped chickadees may also feed their babies some adult insects and the occasional spider (which may be found almost anywhere), but in native trees such as oaks, a high diversity of larvae can be found, and large numbers of them can often be found quickly. Douglas Tallamy’s research has found that a small percentage of plant genera support the majority of Lepidoptera. Other research found that woody plants apparently support many more Lepidoptera species than herbaceous plants do. Whether that is because “woody plants in general are both longer lived and larger than most herbaceous plants and thus may be easier targets for insect herbivores to exploit,” or because “herbaceous plants are underreported as lepidopteran hosts because they are more difficult to identify and less conveniently searched by collectors,” we ought to grow more woody plants to maximize biodiversity, if only to give the benefit of the doubt (and provide birds more cover and potential nest sites). And, as I reported two years ago, another study confirmed that relatives of native trees (i.e. scarlet oak,

Chickadee young are fed by their parents for several weeks post-fledging.

Young chickadees need to be fed by their parents for several weeks after fledging.

a distant cousin of the west coast’s Oregon white oak) host and support fewer species of insects than the native counterpart, and that non-native trees that have no native relative in a region provide next to nothing. Yard after yard of ornamental, introduced species effectively destroys insect diversity and harms native wildlife.

So, now we have more compelling evidence that growing natives can improve the human-dominated landscape by supplying numerous ecological advantages—including the ability to support the entire life cycle of insectivorous birds—and beauty. Whatever benefits the chickadees will also benefit other species, and increase biodiversity overall. The Douglas-firs in the back of my yard and the towering elms in the parking strip on my street nearly always have birds in them. Besides chickadees, I see woodpeckers, nuthatches, warblers, kinglets, bushtits, and more. The chickadees simply tell us what they all need.


© 2017 Eileen M. Stark

To leave a comment, click on post’s title

The Best Way to Feed Hummingbirds in Warm Weather

Anna on columbine

Scorchingly hot weather is upon us in the Pacific Northwest, and it’s understandable to want to feed hummingbirds, but here’s the thing: Hummingbirds have no sense of smell and cannot tell if the sugar water in a feeder has gone bad. Deadly toxins can contaminate a sugar solution rather quickly in very warm weather—as fast as 24 hours—especially if the feeder receives some sunlight. Hummingbirds may become ill (and consequently more subject to predation) and even die from feeding at unattended feeders. And I don’t even want to think about a mother hummingbird’s nestlings who might starve to death after she’s been sickened by fermented sugar water that’s rich in mold and bacteria. So if you cannot keep your feeder fresh and clean, please don’t feed them via artificial feeders. 

Anna on Penstemon ovatusReal flowers are best
To avoid all these potential dangers, I strongly recommend growing plants (preferably native to your area so that other species benefit as well) that provide natural nectar which contains micronutrients, unlike refined sugar. Besides the nutrition and safety of real nectar, you won’t have to deal with unwelcome insects at feeders. Hummingbirds may also consume a sugary liquid from trees and often forage where woodpeckers called sapsuckers create sapwells from which hummers feed. I’ve also seen them at ripe fruit on my fig tree.

Also keep in mind that these amazing little birds do not live on nectar alone: their diet and that of their young includes a surprisingly large amount of tiny insects (and spiders) for protein, and the best way to provide it is, again, with native plants, which supply drastically more insects than non-native plants. And, needless to say, fresh water is essential for all birds and your yard should be free of any pesticides.

Feeder recommendations
If you do feel a need to feed hummers via artificial feeders, here’s a handy chart for how often to clean and refill your feeder, courtesy the Wild Bird Shop:

Daily high temp in shade / Frequency of cleaning/refilling
61-70º                                4 – 5 days
71-80º                                3 days
81-85º                                2 days
86º+                                   daily
 

♦ Refill with just the amount of sugar solution that will be consumed in the time period according to the temperature range.
♦ Keep feeders in the shade.
♦ Choose feeders that don’t have tubes or removable parts, which are very difficult to keep clean. I like the HummZinger feeders, which are VERY easy to clean. Rinse well after cleaning with hot soapy water (no bleach).
♦ Stay away from the colored, pre-mixed commercially available solutions—natural nectar is colorless, and adding red dye and preservatives is adding unnecessary, unnatural, and possibly harmful chemicals to the birds’ food. If your feeder doesn’t have red on it, simply hang a red ribbon next to the feeder.
♦ Only use white cane sugar in a ratio of 4 parts water (preferably filtered, w/o chlorine) to one part sugar. No honey, molasses, or syrups.

HummZinger

 

© 2017 Eileen M. Stark

 
To leave a comment, click on post’s title

Pacific Northwest Native Plant Profile: Cascara (Frangula purshiana)

Rhamnus purshiana drupe
Of the 35+ Frangula species worldwide,
the Northwest’s representative is a lovely medium-sized tree or tall shrub. The first thing you may notice about Cascara (Frangula purshiana, syn. Rhamnus purshiana) is its texture: Thin, silvery gray bark that’s nearly smooth but with a patchy look, and oval glossy green leaves with veins so prominent that they make the surface wavy and crinkled-looking. But Cascara’s charm doesn’t stop there: Springtime brings loose clusters of small, pale greenish-yellow flowers that later become small red fruit (a drupe, each containing 2 or 3 seeds) that ripen to the deepest purplish-blue. In autumn, its leaves turn yellow to orange and may hang on in areas with mild winters.

Frangula purshiana is a member of the Rhamnaceae family; the species name relates to frangulanin, a peptide alkaloid. The epithet, purshiana, commemorates Frederick Traugott Pursh, a remarkably well-traveled (often on foot) 18th century German-American botanist who made major contributions to North American botany.
Rhamnus purshiana

How it grows
Cascara naturally occurs along the Pacific coast from British Columbia south into northern California, as well as parts of Idaho and Montana. It’s found in moist to dry shady forests and mixed woodlands, often along streams or in moist ravines at low to middle elevations, as well as floodplains. It grows up to about 30 feet tall and roughly half as wide.

Cascara and red alder look a bit alike; you can tell them apart mainly by their fruits and leaves. Cascara produces a red to deep purple drupe, while alder’s fruit is an inch-long woody fruit that resembles a cone, known as a strobile. The leaves of Cascara are shinier and smoother than those of alder, which are tightly rolled under on the edges.

Conservation
The dried bark of Cascara has been used for hundreds of years as a laxative—first by indigenous peoples and then commercially (sold as Cascara sagrada)—and the high demand for it has led to unethical harvesting from wild trees, which deprive the plants of their protective and essential bark. It is probable that this practice has heavily reduced cascara populations.

Wildlife value
Pollinators—such as hummingbirds and native bees—come to Cascara’s late spring flowers. Birds—including band-tailed pigeons, robins, tanagers and grosbeaks—as well as mammals such as raccoons and coyotes, are attracted to the pea-sized fruit. Birds like bushtits, kinglets, warblers and chickadees forage on insects found on leaves, twigs and bark. Cascara is a host plant for the caterpillars of gray hairstreak and swallowtail butterflies and more than a dozen moth species, which feed on its leaves. Mule deer and other mammals may use it as browse.

 

Try it at home
Cascara is a great choice for small yards or places where large trees wouldn’t thrive, and I don’t know why it’s not planted more often. Besides its beauty and wildlife appeal, it’s a fast grower that can take a fair amount of sun to full shade, but it does best in partial shade. Though it is drought tolerant when established (especially in shade), it will look and do its best with somewhat moist, well-drained soil that’s rich in organic matter. In general, trees planted in hot, sunny areas will need more water. Like us, Cascara shows sensitivity to toxic gases and tiny sooty particles that are belched out of fossil fuel powered vehicles, so it may be best to keep it away from busy streets and highways. It is reportedly fire resistant.

When planting multiple trees, place them about 15 feet apart (about 10 feet apart for shrubs used as a hedgerow). Cascara shrubs are a good substitute for invasive English laurel or Portugal laurel shrubs where they can be left unpruned.

Grab a partner
Cascara grows in the understory of trees such as big leaf maple, Douglas-fir, and western hemlock, where it might live alongside vine maple, red alder, willows, and red-twig dogwood.

It’s worth noting that some Rhamnus species, such as R. cathartica (“common buckthorn,” native to parts of Europe, northwestern Africa and western Asia), are invasive outside their natural range. R. cathartica was introduced as a garden plant and is now naturalized in parts of North America, probably because it leafs out earlier than native species, often contributing to their downfall.

 

© 2017 Eileen M. Stark

To leave a comment, click on post’s title

Pacific Northwest Native Plant Profile: Broad-leaved penstemon (Penstemon ovatus)

Anna on Penstemon ovatus
Growing penstemons usually requires a valiant effort to mimic wild conditions
by creating rock gardens complete with crevices that these beautiful plants’ roots can inch their way into. Most species will suffer without well-aerated, quick draining soil, and can’t live with frequent summer irrigation. Unless you reside where the soil is naturally rocky or gravelly, providing fast drainage in the Pacific Northwest can be a bit challenging. But wait! Penstemon ovatus likes and needs moisture and will usually let you manage with whatever soil you have, providing it drains well and contains a fair amount of organic matter.

Nicknamed ‘broad-leaved’ or ‘egg-leaf’ penstemon, it’s a great asset to a Pacific Northwest garden. Long-lived, upright, and nicely proportioned, it grows from a woody base with glossy, deep green, spade-shaped leaves. When in flower—typically May and June—the plants rise up two to three feet above ground. Speaking of flowers, they are gorgeous: Small (15 – 20 mm) but many, and arranged in whorls on fairly tall inflorescences, they are a brilliant blue that melds into violet and pink.

How it grows
Hardy to Zone 4, this perennial is native to parts  of the Northwest (west of the Cascade Mountains) at low to middle elevations, in damp, partly sunny to mostly shady places near forest edges, often in riparian areas. Its natural range is somewhat scattered and includes the western Columbia Gorge and parts of the Willamette Valley, as well as northern areas of the Olympic peninsula and southern British Columbia. 

Wildlife value
Penstemons, in general, are fantastic pollinator plants that are irresistible to hummingbirds, native bees, syrphid flies, beetles, ants, moths, and others, depending on the species. In my yard I’ve seen P. ovatus attracting syrphid flies, P. ovatus + tiny native beeants, bumble bees, and impossibly small native sweat bees (pictured, right), many of which nest in the ground (so please take care when applying mulch or digging in soil to avoid harming them!). In addition, small songbirds may eat the seeds that mature in summer, and foliage creates cover for tiny soil-dwelling creatures.

Try it at home
Broad-leaved penstemon likes rich soil, regular (but not excessive) watering, and virtually any light situation except very deep shade or full sun, although more sun tends to make the plants flower more. Since it is a fairly robust and versatile plant, placement shouldn’t be too difficult: In my Portland yard I find it does best in some morning sun, a couple of feet in from pathways due to its spread while in bloom. Placing multiple plants in groups or swaths, with each plant 12 to 24 inches apart, will make it easy for pollinators to find them and minimize the amount of bare soil that sprouts weedy plants.P.ovatus

As mentioned earlier, unless your soil is already high in organic matter and drains well, add some low-nitrogen compost before planting (well-decomposed leaf compost is good). I like to get plants in the ground in mid to late fall when forthcoming winter rains will help get their roots established before the demands of spring; if you plant in springtime be sure to keep them adequately hydrated, especially during that first summer. After plants are established (usually a couple of years), they should do fine with just occasional—but deep—watering. If you happen to plant them close to other plants that like frequent irrigation they will likely do fine, but don’t keep them consistently wet. Siting them at the edges of rain gardens should work, but not in the low, saturated parts. They will definitely self sow, but aren’t very assertive (volunteers are easy to pull, if necessary).

Another Northwest penstemon for moist conditions and sun to part shade is the beautiful Cascade penstemon (Penstemon serrulatus), which is found on both sides of the Cascades.

Grab a partner
If possible, grow broad-leaved penstemon with associated species that also naturally occurred in your area, to help provide an eco-functional space for wildlife. Since it naturally occurs within several native plants communities, shrubs and perennials in those communities are far too numerous to list here. For starters, in sunny sites consider serviceberry (Amelanchier alnifolia), red-twig dogwood (Cornus sericea), blue elderberry (Sambucus nigra ssp. caerulea), large leaf lupine (Lupinus polyphyllus), Douglas aster (Symphyotrichum subspicatum), Oregon iris (Iris tenax), camas (Camassia spp.), and blue-eyed grass (Sisyrinchium spp.). In shadier places try Cascade Oregon grape (Mahonia nervosa), western sword fern (Polystichum munitum), goatsbeard (Aruncus dioicus), fairy bells or fairy lanterns (Prosartes spp.), false solomon’s seal (Maianthemum racemosa), Oregon oxalis (Oxalis oregana), wild ginger (Asarum caudatum). As always, choose plants that are native to your area by buying plants that come from locally sourced material at reputable nurseries.

 

 


© 2017 Eileen M. Stark

To leave a comment, click on post’s title

 

Pacific Northwest Native Plant Profile: Western bleeding heart (Dicentra formosa)

D. formosa
We love Western bleeding heart
 (aka Pacific bleeding heart) because it’s so beautiful and delicate, especially in springtime when its leaves are fresh and flowers are bountiful. Whoever named it felt the same way, because botanically speaking it’s known as Dicentra formosa; the genus name Dicentra refers to the two nectar-bearing spurs characteristic of the flowers of the genus, and the epithet formosa derives from the Latin formosus, which means “beautiful”.

How it grows
With deciduous, finely divided, bluish-green leaves and enchanting, puffy pink flowers, it blooms from early spring into summer. In warm areas with no summer irrigation it tends to disappear after its leaves die back, but fleshy roots keep the plant alive until the following spring. Should moisture reach it during the summer or fall months, it could very well forget about dormancy and even produce more flowers in the fall. It prefers cool weather to hot, and can withstand cold winters.

Western bleeding heart naturally occurs from low to middle elevations in British Columbia and southward into Washington and Oregon (west of Cascades) and northern and central California. It thrives in part to full shade in damp forests and woodlands, in ravines, and near streams.

D. formosa + Bombus vosnesenkii

Western bumble bee feeding on western bleeding heart.

Yellow warbler + Dicentra formosa

Bleeding heart may provide food (aphids or nectar) for birds.

Wildlife value
Wildlife seems to adore this plant as much as we do, due to a variety of attractants. The nectar-rich flowers attract hummingbirds, bumble bees, and syrphid flies, while the foliage may be consumed by the larvae of clodius parnassian butterflies in parts of its range. Aphids like it too, but don’t worry—the birds who like to eat them should keep them in check (especially if you have other natives to attract them): In late April, a small flock of Orange-crowned warblers—fresh from their migration from southern California or Mexico—paused in my yard to feed quite voraciously on them for nearly a week (as well as the flowers, which they pierce to obtain the nectar); a couple of the warblers have stayed around and may be nesting nearby. In addition to birds, unnoticeable predators such as the developing larvae of some species of syrphid flies can eat as many as 500 aphids (each!) before they become adults. In landscapes where predators and prey are allowed to exist, a naturalistic balance soon results. 

Western bleeding heart mainly spreads by underground rhizomes, but it’s also figured out a way to get more mileage. The little black seeds of this plant evolved an oil-rich appendage (called an elaiosome) which ants may feed to their young. When the ants toss the unused part of the seed that’s still viable, they assist in dispersal.

The plant’s leafiness provides cover for small creatures like amphibians and various arthropods, and protects the soil as well. Reportedly, deer are not attracted to it, mostly likely because it contains an alkaloid — isoquinoline — which is toxic in large amounts.

Try it at home
This plant looks wonderful in woodland gardens growing beneath native conifers or other trees, in the company of ferns like deer fern (Blechnum spicant) or western sword fern (Polystichum munitum). It does best with light, moist soil that’s rich in organic matter. Adding a top layer of leaf compost or other organic matter (but not wood chips or bark mulch) and allowing fallen leaves to remain on soil will help maintain moisture around its roots, improve soil structure, and add some nutrients to the soil.

Keep in mind, though, that this is not a shy plant! It likes to prance around the yard so is not best for very small sites, especially if there are delicate perennials that awaken late and could be shaded out by the early arriving bleeding heart. That said, it’s not terribly difficult to remove should you decide you’ve lost affection for it later on (but don’t put its rhizomes in your home compost bins or it might spread everywhere).

Like red-flowering currant, western bleeding heart had to receive a transatlantic ticket to Europe before becoming popular in gardens here: Reportedly, when the Scottish naturalist and surgeon Archibald Menzies found it in Nootka Sound on the Vancouver Expedition in 1792, he gave it to the Royal Botanic Gardens at Kew a few years later. The plant’s seed was then cultivated in Europe, but was not known to be cultivated in the US until 1835.

Grab a partner
Western bleeding heart thrives with native conifers, and in the Pacific Northwest they might be western red cedar (Thuja plicata), western hemlock (Tsuga heterophylla), Douglas-fir (Pseudotsuga menziesii), grand fir (Abies grandis), noble fir (Abies procera), Sitka spruce (Picea sitchensis), and coastal redwood (Sequoia sempervirens), depending on the location. Deciduous trees like red alder (Alnus rubra) and vine maple (Acer circinatum) also like its companionship. Understory species often found growing with it include red huckleberry (Vaccinum parviflorum), evergreen huckleberry (V. ovatum), red twig dogwood (Cornus sericea), salal (Gaultheria shallon), osoberry (Oemleria cerasiformis), false Solomon’s seal (Smilacina racemosa), Hooker’s fairy bells (Disporum hookeri), western meadow rue (Thalictrum occidentale), Scouler’s corydalis (Corydalis scouleri), stream violet (Viola glabella), ferns—such as western sword fern (Polystichum munitum) and lady fern (Athyrium filix-femina)—and mosses.

Other Dicentra species in the Northwest
The uncommon Dicentra cucullaria (Dutchman’s breeches) has white to pale pink flowers with yellow tips and occurs in parts of northern Oregon and southern Washington, mainly near the Columbia River. D. pauciflora, (shorthorn steer’s head or few-flowered bleeding heart), is native to Josephine County, Oregon and small parts of California, only at high elevations in gravelly soils. D. uniflora (steer’s head), is a rare relation that also grows in gravelly (sometimes serpentine) soils at low to high elevations in parts of the Northwest.

 

© 2017 Eileen M. Stark

To leave a comment, click on post’s title

Pacific Northwest Native Plant Profile: Henderson’s shooting star (Dodecatheon hendersonii)

 

Dodecatheon hendersonii
Nicknamed “shooting star,” Dodecatheon species are delicate spring bloomers
that could find a home in nearly every garden. If yours lacks this sweet little perennial wildflower that’s a member of the Primrose family (Primulaceae), by all means get outside now to witness its unusual springtime blossoms, because the plant goes dormant fairly quickly after flowering. And then add it to your shopping list.

How it grows
Dodecatheon hendersonii naturally occurs in much of California, in Oregon and parts of Washington west of the Cascades, and southern Vancouver Island at low to mid-elevations within open woodlands, forest edges, and grasslands, typically in partial shade. In springtime, the plant emerges from dormancy as a modest little clump of soft green, oval or spoon-shaped leaves. A few weeks later, a slim leafless flower stalk grows above the rosette of foliage and, after what seems like a blink of an eye, spectacular little downturned flowers emerge with magenta to pink to white petals swept backwards, looking almost as though they’d been caught in a terrific windstorm, their stamens, stigma, and style protruding forward, collectively, like miniature colorful darts. Following pollination, the flowers turn toward the stars. The ovary essentially becomes a capsule where the seeds develop and, as they mature, any remaining anthers, stigma and petals fall off. Seeds are dispersed by wind or creatures who bump into the dry scape.This image has an empty alt attribute; its file name is Dodecatheon-hendersonii-1-scaled.jpg

Wildlife value
Flowers, of course, aren’t just for our eyes. Dodecatheon species evolved to attract certain species of solitary bees, as well as native bumble bees who have the ability to vibrate flowers using indirect flight muscles (aka “buzz pollination”). While they’re collecting pollen for their young (Dodecatheon species offer no nectar), the bumble bees release pollen that’s securely attached to a flower’s anthers and transfer it to stamens with their legs and mandibles. They also do this for other flowers with tubular anthers (including tomato blossoms, so consider growing native pollinator plants to attract native bees to your veggie beds!).

Try it at home
While Dodecatheon hendersonii can handle the wet soils of the Pacific Northwest’s winter and spring, it needs to dry out a bit during the summer and fall, so if you grow this species, don’t irrigate often. Since it will take many years to form a colony, space plants in natural-looking drifts, about 12 inches apart and where they won’t be shaded out by any overzealous spring ephemerals you may have, such as tulips (or even native plants such as western bleeding heart, which is an avid but gorgeous traveler).

Depending on your location and your site’s conditions, you might find other Dodecatheon species to be a better fit. Of the nearly 20 species within the genus, the Pacific Northwest hosts several other species: Dodecatheon pulchellum looks similar to D. hendersonii but has longer leaves and naturally occurs in moist areas such as near streams, seeps, and in wet meadows at low to high elevations; D. dentatum subsp. dentatum (white shooting star) is also endemic to the PNW and the only species with consistently white petals; D. poeticum is found mostly in the arid Columbia Basin and eastern Columbia Gorge, where it prefers to grow in sandy soil that is rich in organic matter, as found in the Gorge; D. alpine grows only in moist meadows and near streams at high elevations. Less common is D. jeffreyi, which naturally occurs in British Columbia, Washington, Oregon, California, Idaho, and Montana; it is Critically Imperiled in Wyoming. And D. austrofrigidum can be found, tragically, only in small, scattered populations in Gray’s Harbor and Pacific counties of Washington, where it is listed as Critically Imperiled, and in Clatsop and Tillamook counties of Oregon, where it is listed as Imperiled: In lower elevation riparian sites, “threats [to populations] exist due to logging and grazing upstream, which contributes to flooding and erosion that negatively impacts populations.

To make more of these wonders, collect seed in summer and plant in fall or early spring, or very, very carefully separate bulblets in your garden (that are attached to roots) after flowering and no later than autumn. Or you can simply just let them increase their numbers naturally. More detailed propagation info here.

Grab a partner
Friends and associates of D. hendersonii include Oregon white oak (Quercus garryana), madrone (Arbutus menziesii), California hazelnut (Corylus cornuta var. californica), oceanspray (Holodiscus discolor), snowberry (Symphoricarpos albus), camas (Camassia quamash), white fawn lily (Erythronium oregonum), and many others.

Dodecatheon hendersonii

 
 
 
To leave a comment, click on post’s title

Pacific Northwest Native Plant Profile: Western trillium (Trillium ovatum)

Trillium ovatum

Although introductions are probably not necessary, this is Trillium ovatum, an unmistakable and endearing plant that softly lights up the vernal understory of moist coniferous and mixed forests from southern British Columbia, south to California, east to Idaho, Montana and small parts of Wyoming and Colorado, and north to southwestern Alberta. It’s part of a large genus, with about 50 other members that are native to temperate areas of North America and Asia.

Trillium ovatum’s common names are “western trillium” and “wake robin,” the latter due to its unofficial designation as harbinger of spring. Trillium comes from modern Latin, reportedly an alteration of the Swedish trilling, meaning “triplet,” which refers to its three leaves and three petals. Ovatum is derived from the Latin ovum meaning “egg-shaped,” which describes the leaf outline.

How it grows
A perennial that grows from rhizomes, it technically produces no true leaves or stems above ground; the stems are considered an extension of the horizontal rhizome. The part of the plant that we notice most is an upright flowering scape (stalk), and the leaf-like structures are bracts, but most people call them leaves because they photosynthesize. The smaller leaf-like structures just under the flower are sepals.Trillium ovatum

Trillium species are divided into two types: Pedicellate (those with flowers that have a short stalk called a peduncle) and sessile (those with flowers attached directly to the bracts). The flowers have six stamens and three stigmas. Trillium plants are very long lived and can take as long as 10 years to flower from seed. As the flowers age and following pollination, the white flowers change to pink or even burgundy. Trillium are known as spring ephemerals; as summer proceeds, they go into dormancy and mostly disappear from our view (although those that are well established or receive adequate summer water usually maintain their greenery above ground following the flowering period).

Wildlife value
Pollination happens thanks to native bumble bees, moths, and beetles. The resulting fruit is fleshy and berrylike; the seeds evolved to have fleshy elaiosomes whose nutritious proteins and fats attract muscular ants who carry the seeds back home to feed their young. After the food is consumed, they toss the still viable seed and, voila! Seed dispersal accomplished.

Try it at home
Although trillium plants are quintessential forest denizens, they usually do well in shaded to partly shaded, moist woodland gardens, or even just moist (but well drained) areas on the north or east side of houses, provided that the soil is rich in organic matter and slightly acidic (pH 5.0 to 6.5). Leafy and woody debris is very important in the forest, and should be allowed to accumulate and decompose on the soil at home as well, since fallen leaves, bark, twigs, cones, and branches slow moisture loss and provide habitat as well as nutrients. If your soil is poor and lacking in organic matter, or if the top soil is shallow, add some compost as mulch (leaf compost is good) right after planting and allow whole leaves to continually accumulate on top to eventually create more humus.

Trillium can withstand minor droughts, but occasional summer water will help keep them going until winter rains begin. Recent transplants should definitely be kept slightly moist during the first couple of summers. 

The plants you buy will likely be small, but in the right conditions and over many years they will slowly spread from rhizomes to a clump as wide as two feet. Grow them as nature would: In drifts with individual plants roughly several feet apart. Although I haven’t quite gotten around to growing them from seed, sources say that seed should be collected when capsules begin to open in midsummer. Sow them twice as deep as the seed’s diameter (or slightly deeper) in deep containers with coarse growing medium. Leave them outdoors in a shaded spot to mimic natural conditions. More detailed info on propagation here.

Some PNW associates to grow them with include Douglas-fir, western redcedar, western hemlock, Pacific rhododendron, vine maple, salal, sword fern, maidenhair fern, deer fern, vanilla leaf, oxalis, western wild ginger, and stream violet.

Other Pacific Northwest trillium
Trillium albidum occurs in most parts of western Oregon, as well as Thurston, Pierce and Lewis counties in Washington, and much of northern California. Trillium parviflorum grows naturally in southwestern Washington and northwestern T. kurabyashiiOregon. Trillium rivale occurs only in southwestern Oregon and the northernmost counties of California. Trillium kurabayashii (pictured, right) is naturally found only in Oregon’s Curry County, as well as Del Norte and Humboldt counties of California.

Only buy natives from reputable nurseries and never dig plants from the wild. And it’s true what they say about never picking the flowers—doing so may eliminate the only chance the leaf-like bracts have for photosynthesis, and cause the plant to weaken or possibly even die.

 

© 2017 Eileen M. Stark

To leave a comment, click on post’s title

Pacific Northwest Plant Profile: California hazelnut (Corylus cornuta var. californica)

Corylus cornuta var. california catkins

Flowers in January? You bet. Although they’re not showy blossoms that attract most people desperately searching for signs of spring, the flowers of California hazelnut are a truly welcome sight in mid-winter to spring. Hazelnuts are monoecious plants, having both soft-yellow male catkins that dangle off the tips of leafless branches, and tiny feathery clusters of red stigmas—decidedly female—that are few and often difficult to see. Due to their timing and structure, they are pollinated by wind, not insects.

California hazelnut is a deciduous, multi-stemmed woodland shrub (or small tree), beautifully textured with soft-green, saw-toothed, velvety leaves that adorn arching branches. In autumn it turns a glowing yellow or gold. Corylus cornuta var. california (leaves)Besides seasonal aesthetic interest, it offers hard-shelled edible nuts, which typically mature in late summer to early fall.

A member of the birch family, California hazelnut’s botanical name originates from both Greek and Latin. The genus name, Corylus, comes from the Greek korulos, which means “helmet” and refers to the nearly impenetrable husk on the top of the nut. The epithet, cornuta, means “horned” in Latin and refers to a beaklike point formed by the bracts, or husk, that enclose the developing fruit.

Corylus cornuta var. californica

How it grows
California hazelnut typically can be found on moist, rocky slopes or riparian areas in the understory or at the edge of mixed forests at low to mid-elevations. The variety californica naturally occurs in southern B.C., within most counties of Washington and Oregon west of the Cascades (as well as Wallowa County in NE Oregon), and in northern to central California. Another variety,  Corylus cornuta var. cornuta, commonly known as beaked hazelnut, makes its home east of the Cascades and throughout a large portion of the U.S. According to the US Forest Service, although California hazelnut doesn’t naturally grow with other native hazelnut species, “hybridization is possible in the Willamette Valley of Oregon and other locations where it grows adjacent to European filbert (cultivars of C. avellana) orchards.” Corylus americana (American hazelnut) grows in the central and eastern U.S.

Wildlife value
Many wild species eat and disperse the nuts. Rabbits and deer eat leaves and sprouts. Cover is provided for many species of birds, as well as mammals.

Try it at home
California hazelnut doesCorylus cornuta var. california hazelnut well in sun to shade, and prefers moist but well-drained, somewhat acidic soil with a good amount of organic matter. While tolerant of clay soils, it doesn’t do well on poorly drained sites. Useful for erosion control on slopes, it will eventually form a thicket. Suckers may be removed in winter (during dormancy) to create more of a treelike form, but the habitat created by thickets favors many wild animals, especially birds seeking cover, so consider just leaving this shrub to its natural form.

Mature size varies from 10 feet to 20 feet tall, possibly more with advanced age. Spread is typically 10 to 20 feet, but usually on the lower end in garden situations. Since chipmunks, jays and squirrels love the nuts, I suggest you grow as many of these charming shrubs as possible (especially if you want to have the chance to taste them yourself!). Growing more than one shrub also increases pollination, which leads to more nuts per plant. Space them 10 to 20 feet apart (on the low end if you want some density). Though this shrub is quite drought tolerant when established (2 to 5 years), water it deeply but infrequently in the hot summer months thereafter, especially if your site receives a lot of sun or reflected heat.

Squirrel watchingTo grow this plant from seed, collect nuts in late summer or early fall while the husks are still a bit green. To make sure they’re viable, place them in a bowl of water for 15 minutes or so, and use only those that sink. Plant them outdoors, an inch or two deep (but make sure a little squirrel isn’t watching you do it!). Mature plants can also be ground layered or propagated by semi-hardwood cuttings in the fall, or suckers may be divided in early spring.

California hazelnut is a good substitute for European hazelnut or English hawthorn.

Grab a partner
Because California hazelnut grows in a variety of plant communities, it gets along well with many other species. Choose partners that would have likely grown in your area. In the Douglas-fir/western hemlock ecoregion, consider red alder (Alnus rubra), vine maple (Acer circinatum), salal (Gaultheria shallon), thimbleberry (Rubus parviflorus), sword fern (Polystichum munitum), deer fern (Blechnum spicant), and woodland strawberry (Frageria virginiana or F. vesca), among others. In the grassland and oak woodland areas of the Willamette Valley, Puget Trough, and Georgia Basin, grow it with Oregon white oak (Quercus garryana), Oregon ash (Fraxinus latifolia), cascara (Rhamnus purshiana), red-twig dogwood (Cornus sericea), inside-out flower (Vancounveria hexandra) and others. In the southern Coast Range and mountainous areas of southwest Oregon, include tanoak (Lithocarpus densiflorus), madrone (Arbutus menziesii), and serviceberry (Amelanchier alnifolia).

As always, buy plants propagated from source material that originated as close as possible to your site. Using such “local genotypes”  helps ensure that you get plants that are well adapted to your area and preserves the genetic diversity that helps plants (and animals) adapt to changing conditions. Ask growers and nurseries about their sources if you’re unsure.

© 2017 Eileen M. Stark

To leave a comment, click on post’s title

Pacific Northwest Native Plant Profile: Deer Fern (Blechnum spicant)

Blechnum spicant

Since winter is well on its way, this seems like a good time to give a nod to a distinctive evergreen fern that brings elegance and function to moist, west coast coniferous forests, as well as shady gardens. Deer fern, known botanically as Blechnum spicant, comes from a large, extended family known as Blechnaceae (the chain fern family). The genus Blechnum actually has fewer members north of the equator than south (most of which live in the steamy tropics), and a few of the Ecuadorian cousins have managed to graduate to tree fern status, topping out at an impressive 10 feet tall! But our sweet little deer fern pays no mind to their staid accomplishments and remains forever a trim forest gem with many friends and admirers.

The Latin Blechnum comes from the Greek Blechnon, an ancient name for ferns, while spicant means “spikelike.” Its spikes are fertile fronds (which can be seen in the top photo) that rise vertically above the more earthly sterile fronds that produce no spores. Leaves on both types of fronds have oppositely arranged, shiny leaflets; the fertile ones are much narrower and have two rows of sori on their undersides. Deer fern looks attractive year round and its leaves often develop a coppery-red color in early spring.

Blechnum spicant

How it grows
This long-lived fern naturally occurs in southern Alaska, coastal British Columbia, Washington and Oregon (west of the Cascades), northern Idaho where it is classified as imperiled, and coastal California, as far south as Santa Cruz county, as well as the Sierra Nevada. It also occurs in parts of Europe. In western Oregon and Washington it grows from sea level up to montane zones and dominates the understory of what little remains of moist, old-growth forests, as well as second-growth forests.

Wildlife value
As you might expect, deer fern satisfies the winter hunger of deer, but also elk, caribou, moose, mountain goats, and bighorn sheep, especially in winter. It also provides year-round cover for small birds and mammals, insects, and other little creatures. Some birds may use the leaves as nesting material.

Try it at home
Deer ferns spread by thick, short, creeping rhizomes, and the key word here is short—as in stubby—which means they don’t spread nearly as fast as I would like. They prefer the misty air created by mature forest giants, the soft, moist, crumbly soil that comes from centuries of fallen detritus, and the symbiotic support of a real forest, not the drastically altered state of rectangular urban patches with hard, compacted soil and blistering heat. But don’t let that discourage you if you have close to the conditions deer ferns need: Shaded, relatively moist, somewhat rich soil beneath the protective canopy of (preferably native) conifers. A little dappled sun is fine if you can provide some supplemental water (especially when they’re young), but don’t try to grow them in bright, fairly sunny places where sword ferns (Polystichum munitum) would do better. Allowing for a nice thick layer of compost or other organic matter (such as fallen leaves that break down by fungus and microscopic organisms) will help maintain moisture around their roots and add nutrients to the soil over time.

Although deer ferns are handsome close-up as focal plants, they are at their loveliest when grown en masse as a ground cover. Since they eventually grow to about two feet tall and wide, space them about two feet apart. Or, consider placing them a bit further apart and add the companionship of other native ground cover species that can nestle in between the ferns (but not crowd them out)—this looks the most natural and will help keep down weeds and protect the soil.

Deer fern is a good sub for nonnative invasive plants such as English ivy (Hedera helix) and bittersweet nightshade (Solanum dulcamara).

deer fern & friends

In my backyard, deer fern mingles with maidenhair fern, piggy-back plant, and red-twig dogwood, all under the watchful eye of a youthful western redcedar.

Grab a partner
Deer fern does best with many other species that grow together within native plant communities. It thrives with native conifers, and in the Pacific Northwest they may include western redcedar (Thuja plicata), western hemlock (Tsuga heterophylla), Douglas-fir (Pseudotsuga menziesii), grand fir (Abies grandis), noble fir (Abies procera), Sitka spruce (Picea sitchensis), and coastal redwood (Sequoia sempervirens), depending on the location. Deciduous trees like red alder (Alnus rubra) and vine maple (Acer circinatum) also make the cut. Understory species often found growing with deer fern include red huckleberry (Vaccinum parviflorum), thimbleberry (Rubus parviflorus), salal (Gaultheria shallon), devil’s club (Oplopanax horridus), queen-cup (Clintonia uniflora), false Solomon’s seal (Smilacina racemosa), Hooker’s fairy bells (Disporum hookeri), foamflower (Tiarella trifoliata), stream violet (Viola glabella), wild ginger (Asarum caudatum), piggy-back plant (Tolmiea menziesii), bunchberry (Cornus unalaschkensis), various mosses, and other ferns such as western sword fern (Polystichum munitum), ladyfern (Athyrium filix-femina), and oakfern (Gymnocarpium dryopteris).

© 2016 Eileen M. Stark

To leave a comment, click on post’s title

Reimagining the Ecological Value of Cities for Dwindling Pollinators

Bombus vosnesenskii

A recent literature review on the ecology of urban areas published in Conservation Biology offers irrefutable evidence that cities can and ought to be havens for wildlife, specifically pollinators. In “The City as a Refuge for Insect Pollinators,” the authors, a group of multidisciplinary scientists from around the world, recommend that urban areas—particularly fast growing ones—be managed to support biodiversity.

Habitat loss, degradation and fragmentation, industrial farming, wildlife diseases, and widespread use of toxic pesticides have wiped out and continue to wipe out many insect pollinator species. Along with other invertebrates, we really don’t know how many are disappearing from the earth forever, although new studies show horrifying losses. Since urban sprawl is a major reason for the shocking loss of biodiversity, it’s surprising that historically, the consensus—even among conservationists—has been that cities can’t or don’t need to support wildlife. But many years of research on wild bees in urban areas proves that cities can or still do supply habitat for both pollinator abundance and diversity, and “in several cases, more diverse and abundant populations of native bees live in cities than in nearby rural landscapes.”

While we certainly need to also restore and protect rural and suburban lands, there’s a growing realization that “pollinators put high-priority and high-impact urban conservation within reach,” writes the team. “The relatively small spatial and temporal scales of insect pollinators in terms of functional ecology (habitat range, lifecycle, nesting behavior compared with larger mammals for example) offer opportunities for small actions to yield large benefits for pollinator health.” Small actions: they’re talking about you and me, as well as city planners. As the authors note, many residents understand the urgency and necessity, and are willing to help. Turning our yards into “real” Cedar waxwing in red-flowering currantgardens, complete with native plantings and other elements that support entire life cycles of local biodiversity, ought to be paramount. Priceless benefits to us (crop pollination and a chance to admire nature’s beauty), to countless other species that rely on plants or insects for food, and to plants (pollination), come with the package.

Urban conservation often aims to connect people to nature. This is, of course, a good thing, since nature education is extremely important—it’s been said many times that the more we learn about wildlife and natural processes, the more we will want to protect it. But if more effort was spent on wildlife itself and providing what it needs (large, undisturbed, interconnected areas of native flora), no doubt many species would be much better off. I always feel a need to apologize to startled birds and little mammals I encounter on walks in natural areas around the city. There’s a reason wildlife refuges often close off sections to pedestrians: many species are hypersensitive to human presence; they see us as predators and the stress harms them. It would be immensely beneficial if parts of urban areas were also simply left to the wild ones.

I can’t agree more with the authors. If we want to recover and protect pollinators and other wildlife globally, we need to tend to their needs locally. It will take policy makers, planners, and environmental managers, but also each of us, whether we work individually or engage with community organizers.

 

© 2016 Eileen M. Stark

To leave a comment, click on post’s title

Pacific Northwest Native Plant Profile: Western Wild Ginger (Asarum caudatum)

Asarum caudatum

Western wild ginger (Asarum caudatum) is an understory plant that offers wonderful texture in the form of deeply veined, evergreen, aromatic leaves that carpet the soil in shady conditions, soil protection, habitat for tiny creatures, and unusual, secretive flowers. The genus Asarum has about 17 species found in North America, China, and Europe; the name is the Latin form of the Greek asaron, of obscure origin. The species epithet, caudatum, means “tailed” and refers to the wispy, almost whimsical appendages of the sepals, which protect the flower.

And what a flower! Burgundy with a brownish tinge and enchantingly mysterious in appearance, they typically bloom from April to July in Oregon. You may not even notice them unless you’re weeding on your hands and knees, or if you make a special point to seek out their intricate beauty at ground level. With charming little tails, a three-cornered shape, and a hairy cup that conceals the real flower, they are one of nature’s hidden little gems, observable only to soil dwellers or those two-legged creatures with a spirit of curiosity.

Asarum caudatum

How it grows
Western wild ginger is an often overlooked but ubiquitous member of various forest communities at low to middle elevations, from British Columbia south to California, and as far east as western Montana. With substantial tree cover and rich soils, these communities occur in areas with mild, wet winters and warm, dry summers, on fairly flat ground to moderate slopes, where they help control erosion. The available literature suggests that while wild ginger is not an early colonizer in the process of succession (a.k.a. “pioneer species”), it occurs in most successional communities, including stages that have some overstory canopy. In other words, they grow with established forest species that didn’t pop up overnight and won’t be found in recently disturbed areas, like clearcuts, burns, or landslides. They will do best with established native trees that offer protection and other rewards.

Wildlife value
Lustrous evergreen leaves provide protection for little arthropods and other tiny lives that frequent the forest floor, which may in turn supply food for some bird and herp species. The flowers attract beetles that (along with flies and gnats) pollinate them, as well as ants that are drawn to a fleshy appendage on its seeds that contain an oil. And it is thought that the plant may sustain native rodents in some parts of the region. Garden slugs may be attracted to wild ginger, but any slug poison used will also kill native slugs that do not harm the plant. 

Try it at home
Wild ginger is a ground cover that creeps slowly by shallow, fleshy rhizomes; the closer you space plants, the faster they will fill in (generally, about three to four feet apart is adequate). In addition to reproduction via rhizomes, it sometimes spreads by seed, thanks to ants: After they dutifully and mightily drag an entire seed back to their nest, the oil is removed for their young and the remainder of the seed, still viable, is discarded onto the soil.

Optimal growing conditions include shade to part shade and moist, rich soil. If you already have a woodland garden complete with mature conifers, your soil will probably be adequately acidic and fertile (unless you’ve been removing leaf litter and such that should be allowed to stay!). If your soil is lacking in organic matter, or the top soil is shallow, add some compost as mulch (leaf compost is good) and allow future leaves to stay put.

Since wild ginger prefers moist soil, keep new plants adequately hydrated for at least the first couple of summers, especially if your site lacks many trees or is subjected to sunlight or heat. Plant it in the fall for best results.

This plant is a possible substitute for the invasive Bishop’s weed (Aegopodium podagraria).

Grab a partner
Wild ginger is a choice perennial for beneath native conifers like Douglas-fir, Western hemlock, Sitka spruce, grand fir, white pine, and Western redcedar, as well as deciduous smaller trees and shrubs such as red alder, vine maple, and California hazelnut. It is exquisite growing amongst smaller associated species such as sword fern, deer fern, goatsbeard, fairybellsfoamflower, trillium, and many others.


© 2016 Eileen M. Stark

Pacific Northwest Native Plant Profile: Foamflower (Tiarella trifoliata)

           Tiarella trifoliata var. trifoliata    

Tiarella trifoliata, commonly called “foamflower,” is a lovely woodland perennial within the Western hemlock/Douglas-fir plant community of the Pacific Northwest. Besides having beautiful soft green leaves that are often divided into three leaflets, its sprays of delicate flowers — of the palest pink — bloom on leafy stems for an amazingly long time: From May to as late as September. Really!

How it grows
This charming plant can be found in damp, shady forests, and near streams. It has rhizomes but doesn’t spread like typical ground cover plants; in fact, you’re more likely to find it self sowing than spreading speedily underground. There are three varieties: Tiarella trifoliata var. trifoliata, the one you’re most likely to find for sale, is found mainly west of the Cascades as well as in southern Alaska and British Columbia, at low to middle elevations. Tiarella trifoliata var. unifoliata occurs on both sides of the Cascades, west to Montana, and in B.C. and northern California, typically at higher elevations; it has more deeply lobed leaves. Tiarella trifoliata var. laciniata, has a very small range—only a few counties in Washington and Oregon and parts of B.C.; its leaves are maplelike and shallowly lobed. The other North American foamflower is T. cordifolia, native to the eastern U.S.

Tiarella close-up

Tiarella trifoliata var. trifoliata’s dainty bell-shaped flowers, very close up.

Wildlife value
Foamflower’s clusters of tiny blossoms provide pollen and nectar for native bees and syrphid (aka hover) flies. Seeds are eaten by ground-feeding birds such as sparrows. Foliage provides cover for very small creatures and protects the soil.

Try it at home
Maturing to barely a foot tall and wide, it’s best grown en masse in the shade (or partial shade) of conifers where the soil is well-drained but naturally rich (or has been amended with organic matter, like compost), as well as along shaded pathways or near ponds and streams. Plant this gem in the fall for best results. If it’s not grown in a moist area, keep it happy with supplemental water during dry periods and it will self sow, but only in the most polite way.

Grab a partner
Grow foam flower with associated species such as Douglas-fir, western hemlock, western redcedar, vine maple, serviceberry, oceanspray, thimbleberry, sword fern, salal, Cascade Oregon grape, inside-out flower, oxalis, and many others.

 

© 2016 Eileen M. Stark

To leave a comment, click on post’s title

Pacific Northwest Native Plant Profile: White spiraea (Spiraea betulifolia var. lucida)

 

 

Even though it’s growing and thriving in my front yard, it took an October trip to northeast Oregon’s Wallowa Mountains to remind me why I love white spiraea (aka shiny-leaf spiraea or birch-leaf spiraea), or botanically speaking, Spiraea betulifolia var. lucida. In Latin, lucida means “bright,” or “to shine,” and shine it does.

Uncommon, small (as shrubs go, typically about 3 feet tall), erect (usually) and deciduous, it’s a very attractive native plant that spreads slowly by rhizomes. Though its seeds are also perfectly capable of repopulating and may be distributed by birds, rodents, or wind, I find it’s not a strong self-sower. The U.S. Forest Service affirms that “overall seed production and dispersal is low” and “seedlings of white spiraea are rarely found.”

Besides its small stature that allows it to fit into fairly tight spots, it has many other attributes and I can’t imagine why it’s not planted more often in yards and gardens in the Northwest. It’s barely mentioned in my book, so here I give it its due.

In late spring to early summer, creamy white flowers — sometimes with a pale pink blush — show up in flat-topped clusters that are 2 to 5 inches wide. With occasional deep summer watering, it will sometimes bloom during late summer and even autumn as well. As the flowers mature they offer lovely, although fairly inconspicuous, golden brown seed heads that continue to delight.

Spiraea betulifolia var. lucidaBut the best is yet to come: Fall may be its prime season when oval to oblong toothed leaves turn lovely shades of gold, orange, red, and burgundy. The entire little shrub lights up like a flame above the dark, moist soil and fallen leaves beneath it.

 

 

How it grows
White spiraea naturally occurs in parts of western Canada, Washington and Oregon, and as far east as Montana. It grows along streams and lakes, in mountain grasslands and on the slopes of forests (especially rocky ones) both east and west of the Cascades, from sea level up to about 4,000 feet, although it can be found at higher elevations in moist forests. Since it’s best to grow native plants that are indigenous to your area, find out whether it occurs naturally in your county with this USDA map.

Last week I was pleasantly surprised to find it in the Wallowa-Whitman National Forest along the Wallowa Lake Trail and the Hurricane Creek Trail near Joseph, Oregon. Since these areas can get quite dry in summer, the plant’s drought tolerance is likely due to its rhizomatous ways. Often surviving in burned areas, fire kills the aboveground part of the plant, but it resprouts from “surviving root crowns, and from rhizomes positioned 2 to 5 inches (5-13 cm) below the soil surface,” according to the US Forest Service. Along the Hurricane Creek Trail, which meanders through a burned area, white spiraea was joined by “pioneer” species like western yarrow (Achillea millefolium var. occidentalis), and western pearly everlasting (Anaphalis margaritacea).

Wildlife value
The flowers—often with an extended bloom time—offer pollen and/or nectar for pollinators such as native bees, syrphid flies, butterflies, moths, wasps, and ants. Leaves and branches offer a bit of cover for small creatures, and fallen leaves protect the soil and overwintering invertebrates, which provide food for myriad other species. It’s reportedly rather unpalatable to mule deer and elk, for those of you wanting native plants that won’t get munched on overnight.This image has an empty alt attribute; its file name is S.-lucida-w-bumblebee-1.jpg

Try it at home
White spiraea is a fantastic little shrub that can be used in the places that a large shrub would outgrow in a few years. It’s also quite versatile when it comes to both light and moisture conditions. Since it’s an understory plant, it can handle quite a bit of shade to a fair amount of sun, but seems to do best in a mix of both. A restoration project in Montana found that the plants did much better on east or south-facing slopes, rather than west-facing slopes that get scorchingly hot afternoon sun. At the Portland community garden where I rent a plot for growing veggies, white spiraea was planted (before I acquired my plot) in native beds that border the garden. The beds provide a little test because the sunlight that reaches them varies from just a few morning rays to about a half day of sun to nearly all-day sun. Echoing the Montana study, the spiraeas that do best are in a partly shaded area; many of the ones planted in a narrow sunny strip along a hot concrete walkway died, while those in full shade survive, but don’t look their best or flower much.

Spiraea betulifolia var. lucida

Place them about 3 or 4 feet apart and at least 2 feet from walkways, since they will eventually spread (slowly) and you don’t want to be constantly pruning them back. Amending soil with some organic matter (like compost) will help them get established, although they are quite tolerant of clay soil, as well as rocky soil. Mulch them with a natural mulch (like leaves) and keep them well watered the first 2 to 3 years, after which they should be quite drought tolerant (unless you plant them in all-day sun, which I don’t advise).

Grab a partner
Grow white spiraea with associated species that naturally occur in your area to help provide an eco-functional space for wildlife. It naturally occurs within Douglas-fir, grand fir, ponderosa pine, and lodgepole pine communities. Though shrubs and perennials in those communities are far too numerous to list here, consider serviceberry (Amelanchier alnifolia), red-twig dogwood (Cornus sericea), blue elderberry (Sambucus nigra ssp. caerulea), and Cascade Oregon grape (Mahonia nervosa). As always, buy plants that come from locally-sourced material at reputable nurseries.

 

© 2016 Eileen M. Stark

To leave a comment, click on post’s title

 

Pacific Northwest Native Plant Profile: Graceful cinquefoil (Potentilla gracilis)

Potentilla gracilis with sweat-bees
Nicknamed slender cinquefoil or western cinquefoil, Potentilla gracilis is a perennial herbaceous plant. It naturally occurs over much of western and northern North America at low to high elevations, mostly in moist to dry prairie and savanna ecosystems, but also in open forests, on rocky slopes and subalpine meadows. Growing from a woody crown, it has sharply divided, oval, deep green leaves with hairy, silver undersides and somewhat erect inflorescences with bright to pale yellow five-petaled flowers that bloom from early to late summer. In the Pacific Northwest, it naturally occurs in nearly every county in Oregon and Washington, as well as parts of southern British Columbia.

Closely related species include Potentilla glandulosa (sticky cinquefoil), with cream to pale yellow flowers, and Potentilla pulcherrima, the latter of which grows in montane regions. P. pulcherrima (common name: beautiful cinquefoil) comes from the Latin pulcherrima, which means “very beautiful” (aren’t they all?). Both occur mainly in the western U.S. and Canada. There are many other species of Potentilla, but P. gracilis and P. glandulosa are the most common west of the Cascades and are the most likely to be found for sale at nurseries.

Wildlife value
Native bees, butterflies, syrphid flies, and other beneficial insects are attracted to the flowers. Graceful cinquefoil is also a host plant for the caterpillars of butterflies such as the two-banded checkered skipper. It is not attractive to deer.

Try it at home
Graceful cinquefoil does best in moist, well-drained soil that’s rich in organic matter, in full to part sun. Since it’s not a tall plant (usually no more than about two feet tall) and only grows to about two feet wide, site it where it won’t be heavily shaded by other plants. You can also grow native cinquefoil in a container, but be sure it gets enough moisture. Associated species include Cascara and Oregon ash trees, and perennials such as checker mallow, Oregon iris, native lupines, and other moisture loving plants. Summer water is essential until it’s established, but even afterwards it will do best with supplemental water during the hot, dry part of summer.

© 2016 Eileen M. Stark

To leave a comment, click on post’s title

Cultivate Compassion in the Garden (and Beyond)

painted turtles

Whether they’re hidden within fur farms or factory farms or other atrocious places—mistreated and maligned for profit—or in plain sight and struggling within unraveling ecosystems that disappear a little more each day, the suffering of non-human animals due to our expansion and behavior is everywhere. On an ecological level, the most devastating consequence of our ubiquitous presence is the disappearance of wild species that just need to be left alone. They want to live on, and in peace, just as we do. They have just as much right to exist without harm and suffering as we do.

Habitat destruction (including that caused by climate chaos) is not painless and is the main threat to most wild flora and faunas: Less than four percent of original U.S. forests remain; oceans are dying; waterways are heavily polluted with toxins; farmland is quickly expanding; a new study shows that in the past 20 years we’ve managed to destroy a tenth of the earth’s wild areas. Half of North American bird species are predicted to go extinct by the end of this century and some especially sensitive amphibians are already there. We’re the most invasive, destructive, and over-consuming species ever to walk the earth, and it’s costing us the earth, as well as our health and happiness.hermit thrush

Our big brains are burdensome as we thoughtlessly invent things that damage and destroy, but they’re also an asset when we realize our obligation to protect and sustain. Habits of exploitation can be broken. We can stop pretending that everything is fine or beyond our control, and realize that we are very much a part of nature. We don’t have to, for example, conform to having manicured, high maintenance, lawn-dominated landscapes that require massive chemical and fossil fuel applications just because other people have them. We can make choices based on caring what happens to those downstream, just as we wish those upstream would to do to us.

When our species was young, we weren’t separated from nature. Even now, within our bubbles that disconnect, we enter this world not with a fear of natural processes and wild creatures, but with an intense curiosity. But as kids we learn to be fearful—we’re taught to fear the proverbial “big bad wolf,” and trepidation of wildlife and natural processes continue throughout many people’s lives. Education can help change that, and even awaken us to the awe-inspiring, interconnected layers that nature has fashioned over eons of evolution.

Courtesy Predator Defense

Photo courtesy Predator Defense

Just as essential is empathy for other species (that is, looking at their world from their point of view, with compassion). It may be our most important capability and what is sorely needed to bring some balance to the earth’s members. When we allow empathy to guide our choices and practices, we act selflessly and gain empowerment along the way. Changing our ways isn’t always difficult and some changes can be very simple; it just takes some thought and a little motivation. With compassion we can defiantly say “no” to synthetic toxic chemicals crafted by mega corporations that discriminate against other species and seek to control the natural world, “no” to wasteful monoculture lawns, and “no” to merely decorative plants with zero wildlife appeal. We can say “yes” to planning gardens that not only look pretty but also benefit and sustain other species,  “yes” to keeping Fluffy and Fido away from birds and other vulnerable creatures, “yes” to keeping outdoor lights off and making windows visible to birds, and “yes” to initiatives and politicians that seek to preserve and protect natural areas. There are, of course, countless other ways to express compassion for the planet outside the garden.

It’s easy to think that the war against wildlife—from the microorganisms within degraded soil to persecuted predators trying to survive on a human-dominated planet—is happening somewhere “out there.” While a huge percentage of wild lands are dominated by livestock ranching that has “caused more damage than the chainsaw and bulldozer combined,” urban and suburban spaces—including the roughly 40 million acres of land that’s currently lawn—offer an important conservation opportunity and a way for us to personally provide for others right at home.

It’s equally easy to be pulled down by the ticking extinction clock, but once we turn our backs on conventional gardening, we become part of a conversion—or revolution, if you will—that is proactive. Learn how healthy, balanced ecosystems function; watch native plants (especially when grown with others that co-occur in the Native bumblebee on Vancouveria hexandraarea) attract and support a diversity of native insects and other creatures; recognize the  bees and the flower flies and the birds that depend directly or indirectly on those plant communities; discover their life cycle and how to keep them healthy and protected. Plant trees, let the leaves do their thing, allow the dead wood to stay, and forget about pesticides and synthetic fertilizers. If we do all that, we’ll find ourselves more connected and caring even more about what happens within the dwindling, wilder ecosystems on this beautiful planet, and wondering how even more beautiful it will be if more of us empathize with other species.

 

© 2016 Eileen M. Stark

To leave a comment, click on post’s title

Pacific Northwest Native Plant Profile: Goat’s beard (Aruncus dioicus)

Aruncus dioicus (goatsbeard)

I finally managed to take out a very large hosta plant in my front yard. I really hate to remove healthy noninvasive plants, however non-native they may be (especially when they’re pretty), but we all know that “pretty is as pretty does,” right? Originating in northeast Asia, hostas really have no function here other than looking nice with those ultra-inflated leaves. I don’t think I’d ever seen a native pollinator on its blossoms, let alone a nonnative honeybee. Plus, it was overpowering a fern that belongs in this neck of the woods.

In its place now is a goat’s beard plant (Aruncus dioicus) that had volunteered in the back yard, courtesy its frisky goat’s beard parents. Also known as “bride’s feathers,” it is not only eye-catching while in bloom, but has local ecological function that hostas can only dream about. It also fits well into the shade-loving native spread near the north side of my house, sharing space with a surprisingly robust western maidenhair fern (Adiantum aleuticum), evergreen huckleberry shrubs (Vaccinium ovatum), Cascade Oregon grape (Mahonia nervosa), sword ferns (Polystichum munitum), and native ground cover that includes wild ginger (Asarum caudatum) and inside-out flower (Vancouveria hexandra), all of which can be found growing with goat’s beard in nature.

Aruncus dioicus foliageWith compound, pointy, toothed leaves that have a lovely texture, this plant is particularly fetching in springtime when its leaves are new. The main show begins in early to mid-summer, when tall, feathery plumes composed of tiny, creamy-white flowers rise above the foliage. Male plants are more spectacular in flower than female, but regardless of gender, it offers a stunning presence in shaded to partly-shaded borders, under tall trees, or as a deciduous screen or short hedge.

Wildlife value
Goat’s beard attracts quite a few insect species, including native bees, syrphid flies, teeny tiny beetles, and — if you’re lucky — mourning cloak butterflies (your odds will increase if you already grow their host plants, which include native willow, birch, hawthorn, and wild rose). Small birds may eat the seeds, so leave the spent flowers to overwinter.

Try it at home
Found in most of western Washington, Oregon, and northern California, goat’s beard naturally occurs along streams, in wet ravines, and in moist meadows and forests, but also sometimes in disturbed areas such as roadsides. As such, it likes moist, rich soil (so add compost and allow nature’s mulch—fallen leaves—to remain on soil), but can handle some drought when fully established. Although it does best with at least a half day of shade, it can be grown in nearly full sun in cool, northerly locations. When goat’s beard is happy, it will stabilize soil and eventually form a large clump, 3 to 5 feet tall and as wide, so space plants 3 to 5 feet apart. Both male and female plants need to be planted nearby if seedlings are desired. Grow them with associates (those that naturally grow together and depend on each other), including Douglas-fir, western hemlock, western red cedar, vine maple, deer fern, maidenhair fern, western bleeding heart, inside-out flower, wild ginger, and western trillium. Enjoy!

 

© 2016 Eileen M. Stark

To leave a comment, click on post’s title

Beyond Bees: The Underappreciated Pollinators

Common ringlet (Coenonympha tulle)
The majority of flowering plants evolved to take advantage of insects, and depend on them (and less commonly, other animals or wind) to fertilize their flowers, facilitate gene flow, and prevent inbreeding. Bees might be the most obvious pollinators, and on a warm summer day it seems flowers and bees were made for each other. Native bees, including the 90% of species native to the U.S. that are solitary rather than social — that is, females create nests and raise their young without the help of any other bees — are considered to be the most important pollinators (move over, European honeybees!) and are invaluable members of natural systems. But other capable pollinators—like butterflies and moths, hummingbirds, wasps, ants, herbivorous fruit bats, and even rodents—share the pollen distribution workload, and offer ecological benefits as well. Less well known are the thrips, beetles, mosquitoes (yes, you read that right), and flies that are actually quite accomplished pollinators. Distributing pollen may be a sideline for them, but they often excel because they don’t take pollen back to their nests, as most bees do.

Thrips go way back—to the Permian period, over 250 million years ago—but get a bad rap because of a few species that threaten crops. Studies show that they are strong pollinators of some plants, particularly early in the season when most other pollinators aren’t around.

The adult ornate checkered beetle (Trichodes ornatus) feeds on flowers such as wild buckwheat (Eriogonum spp.), transferring pollen from anther to stigma.

The adult ornate checkered beetle (Trichomes oranatus) feeds on flowers such as wild buckwheat (Eriogonum sp.) and helps transfer pollen from anther to stigma.

Beetles are particularly important in semi-arid parts of the world and have a highly developed sense of smell. They are expert and essential pollinators, according to the Forest Service, and also were around millions of years before bees appeared. Like many species of birds, bees, and butterflies, beetles are in danger of extinction. The International Union for Conservation of Nature lists over 70 beetle species as endangered. The main threats include habitat destruction, chemical pollutants (e.g., pesticides), displacement by introduced species, and hybridization with other species due to human interference.

Although many flies (order Diptera) are recorded as flower visitors, relatively little is known about pollination by flies, compared to other more obvious pollinators. Many flies are strong pollinators, including syrphid flies (which deserve their very own special post) as well as some tachinid flies, which are the most diverse family of the order Diptera (true flies). As adults, they are flower visitors, feeding on nectar and/or pollen; in their larval stages many species help to control insects that we consider pests.

Suillia spp. attracted to bear grass (Xerophyllum tenax) receives a pollen reward.

Pollination by insects is usually mutually beneficial. Here, a fly (Suillia variegata) attracted to bear grass (Xerophyllum tenax) receives a pollen reward and the flower gets fertilized.

While I’m not advocating the nurture of mosquitoes in your garden (the females do suck blood and can carry disease, after all!), it’s noteworthy that mosquitoes, like all insects, do have a role in natural systems. Their primary source of food is flower nectar (with males eating nothing but nectar) and they buzzily and incidentally carry pollen from flower to flower. Plants like goldenrod (Solidago spp.) use mosquitoes as pollinators, as do orchids of northern latitudes, grasses, and many other types of plants. And they are a source of food for birds, fish, amphibians, spiders, bats, dragonfly larvae, and other animals.

How you can help a variety of pollinators

Within our increasingly fragmented landscapes, gardens that provide pollen and nectar-rich plants—as well as nesting and overwintering sites—can create critical habitat and connections for pollinators and other creatures. No space is too small, and when in close proximity to other larger gardens, natural areas, or greenways that sustain native plant populations appropriate to the region, their value deepens.

◊ Choose natives that occur naturally in your area, or at the very least heirloom ornamentals (rather than newer hybrids that may not provide sufficient or appropriate nutrients that native species do). Some garden herbs like cilantro, parsley, and dill attract some pollinators when allowed to flower.

◊ Avoid nonnative invasive species like “butterfly bush” (Buddleia davidii) that sound good, but aren’t.

◊ Provide structure and layering in the form of native trees and shrubs that provide food, cover and nesting sites for various pollinators.

Syrphid _ Eumerus sp.

Syrphid fly (Eumerus sp.) on Sedum spathulifolium, a west coast native.

◊ Plan for continuous flowering, spring through fall. Early spring nectar is particularly important for early-emerging queen bumble bees and other solitary bees, as well as flies and beetles.

◊ Choose a variety of plants that differ in the size, shape, and color of blossoms to attract a variety of pollinators. Arrange perennials in drifts or swaths of at least three of a kind, rather than singly here and there. And don’t forget that trees and shrubs produce flowers!

◊ Stay away from pesticides and other chemicals. Insecticides, herbicides, fungicides, and synthetic fertilizers are particularly harmful to sensitive pollinators. Don’t purchase plants pre-treated with neonicotinoids; if you’re unsure, ask.

◊ Don’t be too neat. Leaf litter, dead wood (tree snags or piles of branches), and other natural detritus provide essential habitat, nesting materials, and overwintering sites for adult pollinators or their eggs, larvae, or pupae. And allow some bare soil for pollinators that nest in the ground.

◊ Grow lepidoptera (butterfly and moth) host plants that provide food and habitat for their young. Find out which species frequent your area and grow the native plants that they need to breed.

◊ Provide shallow water and some moist soil. A shallow pie plate or flowerpot saucer, filled with clean gravel or small rocks allow insects to drink without drowning. Also, butterflies and moths need muddy or sandy puddles to obtain water and nutrients. Add a dash of salt to be sure male Lepidoptera get enough sodium prior to mating.

Please see this post for more detailed info on supporting pollinators in all their life stages.

© Eileen M. Stark 2016

To leave a comment, click on post’s title

Attract Ladybird Beetles (“Ladybugs”) to Your Northwest Garden Humanely

_MG_2279

The Western blood-red ladybird beetle (Cycloneda polita) — one of about 90 species throughout the Pacific Northwest and about 6,000 species worldwide — is tiny (4 to 5 mm), but like most others in the Coccinellidae family, is a voracious consumer of aphids, scale insects, and mites; a few species eat fungi. Revered for centuries due to their role as a pest controller, ladybird beetles at one time were even thought to have supernatural powers. The “lady” for whom they were named was the “Virgin Mary.” Once you have these native predators in your garden you’ll want to keep them, and there’s an easy way to do that.

But first, a little about these endearing little insects, the vast majority of which are beneficial: The most obvious ladybird beetles (often called “ladybugs” in North America, although they are not true bugs) evolved a brightly colored shell to exhibit what biologists call aposematic (warning) coloration, which functions to repel and warn predators that they taste awful (due to production of toxic and unpalatable alkaloids). The “eyespots” on their pronotum (that covers the thorax) are a form of mimicry, possibly to further fool a predator by appearing dangerous, or by adding to the inedibility factor. Their actual face is the tiny black and white portion with brown antennae that you can see in the photo above. The Western blood-red ladybird beetle is plain and without spots, but some species have remarkable color patterns that vary greatly and make identification difficult. Other species lack dramatic coloration.

Life Cycle
Adults are commonly seen on plants in spring and summer, foraging for small invertebrate prey (often aphids), although they will eat nectar, water, or honeydew (the sugary secretion from insects like aphids and white flies) when food is scarce. They overwinter by hibernating in large clusters, often spending the winter under leaf litter, rocks, downed wood, or other debris. If they get into your house in autumn as temperatures plummet, please don’t kill them. Since they need cool temperatures and moisture during the winter (which our homes lack), gently place them back outside under fallen leaves. In hard to reach places (like ceilings) I suggest fastening a piece of lightweight fabric (perhaps a lightweight sock or piece of nylon stocking) onto the end of a vacuum cleaner hose with a rubber band, so that an inch or two of fabric protrudes into the hose. Then, with the power turned down as low as possible, quickly suck them into the fabric, gently remove the fabric with the beetles, and release them under a pile of leaves outdoors. To help prevent future interlopers, caulk cracks and crevices around doors and windows and repair any damaged siding that’s allowing them to get in.

Ladybird beetle larvae are long and flat and are usually covered with little spines, spots and stripes, and resemble tiny alligators. Though sometimes erroneously mistaken for pests, they are completely harmless to humans. Usually found in or near aphid colonies, they feed voraciously on insects for several weeks, then pupate on leaves. Some species produce several generations per year, while others have only one. During the summer, all stages may be seen.

How to Acquire
The best way to get these hungry predators into your garden is not to purchase them, but to provide native habitat and not use any insecticides. The food that they need comes from native plants that naturally attract insect herbivores. In my yard I notice Cycloneda polita (pictured) feeding on lupine (Lupinus spp.), western bleeding heart (Dicentra formosa), fleabane (Erigeron spp.), honeysuckle vines (Lonicera ciliosa and L. hispidula), and this year for the first time, aspen trees (which are also attracting birds like bushtits and kinglets who love to eat aphids).Western blood-red ladybird beetle

Don’t buy them
In the early 1900’s, literally tons of Asian beetles were collected and shipped to agricultural fields. Tragically, over half died during shipments and most of the rest quickly dispersed before the wretched experiment finally ended. Today, ladybird beetles are again popular, but beware the ramifications. According to Judy and Peter Haggard, authors of “Insects of the Pacific Northwest” (Timber Press, 2006), the commercial exploitation of ladybird beetles involves collecting them while they are hibernating, which can be devastating to their populations. “Those innocent-looking mesh bags … in the local garden shop actually represent a cruel and unconscionable practice: Ladybird beetles sold in retail stores are usually exposed to high temperatures, low humidity, and no food for weeks. Even if they survive until bought and released, they are often so weakened, they die soon after being released.” And the ones who do survive usually quickly disperse to areas other than your yard. Bottom line: Don’t purchase them.

To add to the destruction, beetles sold commercially are usually not native species and, as such, are a serious threat to native insect species, including native lady beetles. According to the Oregon Department of Agriculture, “Even species native to North America but collected outside of Oregon should not be released because they may carry diseases and parasites not found in Oregon.”

 

© Eileen M. Stark 2016

To leave a comment, click on post’s title

Fragrance in a Northwest Garden: Western mock orange (Philadelphus lewisii)

Philadelphus lewisii

Had Carl Sandburg penned a poem about the way a captivating scent wafts through the air — prior to his famous “Fog” — he might have written that it approaches us “on little cat feet.” Like fog, scent is silent and invisible and adds a fresh, sensual dimension to a garden (or a walk in the woods for that matter). One of the most fragrant flowering shrubs is mock orange, and the Pacific Northwest’s native offering, Philadelphus lewisii (Western mock orange or Lewis’ mock orange), doesn’t disappoint. Plan ahead and place this medium-sized deciduous shrub where its fragrance can be noticed.

Philadelphus lewisii is named after scientist and explorer Meriwether Lewis, who collected it in 1806 during the Lewis and Clark expedition. Native Americans had numerous uses for it, including making tools, snowshoes, furniture, and even soap.

How it grows
Although there is quite a bit of individual variation within this species, the structure and growth pattern of this particular shrub goes something like this: Maturing at 5 to 10 feet tall and nearly as wide, this fairly fast grower may send out arching basal shoots as it ages, and eventually become a thicket. In late spring, flowering shoots appear, followed by vegetative growth. Rich green, egg-shaped leaves (roughly three inches long) grow in pairs along its stems. At the tips of branches, multiple clusters of white, four-petalled blossoms adorned with soft yellow stamens emerge in late spring or early summer and sparkle against a green, leafy backdrop. Flowers measure one to two inches in diameter, and offer a lovely, fruity fragrance.

Wildlife value
Mock orange’s fragrance doesn’t just appeal to us, though—it attracts nocturnal moths and butterflies like the western tiger swallowtail. As they feed on its nectar and incidentally brush against theSyrphid fly on Philadelphus lewisii flower’s anthers, thousands of male pollen particles are released, pollinating its flowers. Other pollinators attracted to scent include bees, but also syrphid flies (aka flower flies), which are particularly fond of white and yellow flowers. In late summer into winter, mock orange’s wildlife appeal continues as the plant’s tiny seeds are consumed by many species of birds, including goldfinches, as well as squirrels. It also provides twiggy cover year round.

Try it at home
Mock orange is easy to grow. It tolerates both drought (after it’s established, of course) and moisture, and will do well in full to part sun or in a fair amount of shade (but not deep, dark shade). It’s also a good shrub for stabilizing soil on slopes due to a fibrous root system. While it’s not fussy about soil, if your soil’s in bad shape consider incorporating and/or mulching with some decomposed organic matter (like compost) to get it off to a good start.

It’s best to let native plants attain their natural size and habit, but if yours was placed too close to a path or some such, pruning may be necessary. Mock orange should only be pruned soon after flowering since next year’s blossoms develop on the previous year’s growth.

Philadelphus lewisii

 

Grab a partner
Though not common, western mock orange is widespread. It occurs naturally from southern B.C. to northern California and the Sierras, and east to Alberta and western Montana, at low to mid-elevations. Growing along creeks and seeps and forest edges, on hillsides, and within chaparral and pine and fir communities, it associates with species such as Douglas-fir, oceanspray, ninebark, osoberry, baldhip rose, tall Oregon grape, and others. If space allows, try it as a member of a multi-species (unclipped) hedgerow (should pruning be necessary, do it soon after flowering, so that the following year’s blossoms aren’t affected). To stimulate flowering on older shrubs, cut back flowered growth to strong young shoots, cutting out up to 20 percent of aging stems near their base.

Other fragrant PNW plants include wallflower (Erysimum capitatum), Nootka rose (Rosa nutkana), clustered rose (Rosa pisocarpa), bald hip rose (Rosa gymnocarpa), Oregon grape (Mahonia spp.), fringecup (Tellima grandiflora), serviceberry (Amelanchier alnifolia), checker mallow (Sidalcea spp.), oceanspray (Holodiscus discolor), some ceanothus (Ceanothus spp.), bear grass (Xerophyllum tenax), milkweed (Asclepias spp.), madrone (Arbutus menziesii), and black hawthorn (Crataegus douglasii). Enjoy!

 

© 2016 Eileen M. Stark

To leave a comment, click on post’s title

Manage Stormwater at Home for Clean Rivers and Habitat

rainwater mitigation with trees

It’s another one of those exceptionally rainy days (with more to follow) and I don’t want to do laundry or even take a bath. Why? A few days ago the city’s sewers overflowed into the river, and I’d rather not add more water to an already overtaxed system that results in raw sewage killing and polluting the habitat of wild species downstream. It’s not just the abundance of rain that’s the problem: It’s our infrastructure.

Generally, the unaltered earth is perfectly capable of soaking up or directing the moisture that nature doles out to natural waterways or floodplains, and seasonal flooding is normal and natural. But our urban and suburban environments, with their ubiquitous, impermeable roads, walkways, roofs, and parking lots—as well as shortage of erosion-controlling plants—cause runoff that carries soil and toxic pollutants like oil, fertilizers, and pesticides during heavy rains. In older parts of cities, pipes and tunnels that take away domestic and industrial waste combine with water collected from surface runoff. Under normal (not too wet) circumstances, the sewage and runoff is diverted to sewage treatment plants. But when too much storm water or snowmelt can’t soak in, it overwhelms the system, creating combined sewage overflows (CSOs) that cause raw sewage and other pollutants to spill into rivers, lakes, or coastal waters. People may be told not to have contact with the water, but wildlife has no choice and suffers silently. Eventually, polluted sediment builds up in waterways, increasing water temperature and turbidity and lowering oxygen levels, resulting in deaths.

In Portland, where I live, the city is investing in stormwater management projects that (sort of) mimic nature, in an attempt to mitigate stormwater at its sources. There is a plethora of work going on and CSOs are reportedly decreasing in frequency, but even one is too many.

How to help keep water clean

We can help manage and reduce stormwater pollution and overflows, starting at home. Here are some tips; some will have immediate effect, while others will take some time and effort:

Protect existing conifer trees and plant new ones (preferably native species that historically grew in your area). A mature evergreen tree can intercept more than 4,000 gallons of rainwater each permeable hardscapeyear, quite a bit more than deciduous trees. They also provide habitat, beauty, shade and cooling and help stabilize soil. Don’t prune out lower limbs unless it’s absolutely necessary.

Renovate or construct new walkways, driveways, and patios with permeable paving, rather than concrete or asphalt.

Disconnect your home’s downspouts when feasible and install rain gardens or swales in landscaped areas. They help prevent flooding by allowing water that falls on your roof to slowly infiltrate into the ground, lessening the burden on sewer systems when it is most important. Simply disconnecting spouts and allowing water to run down a driveway or walkway and into the street defeats the purpose. Additional rain garden guides: here and here.

swale from disconnected downspout Use only organic fertilizers when necessary (excess can be washed into waterways), and don’t use pesticides.

Grow native plants that help control erosion. Some examples (that naturally occur in many parts of the Pacific Northwest) include vine maple (Acer circinatum), madrone (Arbutus menzeisii), Oregon white oak (Quercus garryana), oceanspray (Holodiscus discolor), serviceberry (Amelanchier alnifolia), salal (Gaultheria shallon), nootka rose (Rosa nutkana), sword fern (Polystichum  munitum), kinnikinnick (Arctostaphylos uva-ursi), and inside-out flower (Vancouveria hexandra). Choose plants that will fit your light, soil, and moisture conditions.

 Employ rain barrels to collect rainwater runoff from building roofs for irrigation during dry weather (if you can’t disconnect a downspout).

Conserve water simply by taking very short showers, never letting the faucet run unnecessarily, and fixing any leaks (just as you would during droughts!).

Collect “graywater” and use it onsite to reduce sewage discharges year round. Beware: this takes some ingenuity and planning!

 Never dispose of chemicals (like anti-freeze) by pouring it on the ground or into storm drains. Even drops of oil that seem relatively contained in your driveway can easily be swept into local waterways by rain. If you get an automotive oil leak, catch the oil in a pan and get it fixed ASAP.


© 2015 Eileen M. Stark

To leave a comment, click on post’s title

 

 

 

Best Early Spring-Flowering Shrubs for Pacific Northwest Pollinators

Ribes sanguineum

Plan ahead for hungry native pollinators who need early-flowering plants like red-flowering currant to survive.

 

April showers may bring May flowers, but what about providing forage for hungry pollinators that need food earlier in the year? To provide large amounts of nectar and pollen in late winter and early spring for emerging bees as well as hummingbirds and other pollinators, to help you endure the gray winter skies and store carbon, and to get the most bang from your buck, add early-flowering native shrubs to your garden. Get new shrubs in the ground preferably in autumn—so the plants benefit from winter rains, and to ensure that you have the early part of a continuous succession of flowers covered.

Here are five early-flowering shrubs (plus one shrubby tree that’s pollinated by wind), listed in order of size from largest to smallest, that naturally occur in large areas of the Pacific Northwest region west of the Cascades. They grow in sun to partial shade, are fairly easy to find at native plant nurseries (as well as nurseries that don’t focus on natives), and are quite easy to grow, provided they are kept adequately moist until they are established (2 to 5 years). All would do well planted in wide, unpruned hedgerows. When choosing any shrub, note its eventual width to be sure you have enough space for it to stretch its limbs and attain its natural form at maturity—and to eliminate future hack jobs by a pruner. 

Buy plants that are responsibly propagated from source material that originated as close as possible to your site. Using such “local genotypes” helps ensure that you get plants that are well adapted to your area and that genetic diversity—which helps plants (and animals) adapt to changing conditions—is preserved. Ask growers and nurseries about their sources.

Salix scoulerianaScouler’s willow (Salix scouleriana): A fast-growing deciduous shrub or small tree. Flowers are soft catkins, larger than horticultural “pussy willows,” and appear in early to mid-spring. Male and female flowers are on different plants, so grow both for seeds. Scouler willow is a larval host plant for several butterfly species. Does not tolerate full shade. Prefers moist soil. 20-30 feet tall by 10-15 feet wide at maturity. 

 

Oemleria cerasiformis

 

Osoberry (Oemleria cerasiformis): A large, arching deciduous shrub or small tree that blooms prolifically in late winter as leaves emerge. Tolerates clay soil well, but does best with some shade (nature places it in the dappled shade of tall trees). Plants are either male or female, so plant several to produce the fruit that birds need. 12-18 feet by 10-14 feet at maturity.

Amelanchier alnifolia

 

 

Serviceberry (Amelanchier alnifolia): A versatile, multibranched shrub with lovely white, fragrant flowers in mid to late spring. Bluish-green leaves turn gold to reddish in autumn. Larval host plant for several butterfly species. Needs well-drained soil with adequate organic matter. Tolerates full sun in cool areas. Doesn’t like competition, so plant other shrubs and perennials at least several feet away. 8-18 feet tall by 6-10 feet wide at maturity.


Red-flowering currant (Ribes sanguineum)
: An upright, deciduous shrub with nearly year-round appeal. Gorgeous, pendulous, lightly fragrant flower clusters (pictured, top) that bloom in early spring are followed by powder-blue berries. Leaves turn golden in late autumn. Larval host plant for butterfly larvae. Controls erosion. Can’t handle excessively wet soils, so be sure soil drains well and plant it away from rain gardens and other drainage areas.  7-10 feet tall by 6-9 feet wide at maturity. More info in this post


Mahonia aquifoliumTall Oregon grape (Mahonia aquifolium)
: A handsome, multitalented evergreen shrub with an upright growth habit. Bursts into flower brilliantly in early to mid-spring, for a long period. Tolerates acidic soils. Has somewhat prickly evergreen leaves, so site it where it won’t be brushed against frequently. 5-9 feet tall by 3-6 feet wide. Will spread slowly. More info in this post.

 

The earliest winter bloomer is the handsome beaked hazelnut (Corylus cornuta var. californica), a beautifully textured, large multistemmed woodland shrub or small tree that grows to 10-20 feet tall by 10-20 feet wide. It is pollinated by wind, not animals. More info here.

After planting
Add a few inches of organic matter as mulch around the shrub (but keep away from trunk) to insulate, keep weeds down, and add nutrients. Fallen leaves work well, as does weed-free compost. If you use wood chips, make sure they aren’t finely ground and/or fresh, and don’t dig them into soil—under-composted chips and bark can deplete soil of nitrogen during breakdown. Later on, simply allow fallen leaves to remain on soil to provide habitat and nutrients.

All of these shrubs are drought tolerant when established (although Scouler willow does best with supplemental summer water), but they will appreciate some irrigation in very hot situations. They should need little to no pruning if they’ve been sited to allow room for their growth.

If you already grow any of these shrubs, I’d love to hear what wild species you’ve seen attracted to them. Or how much they brighten your garden on drab winter days?


© 2015 Eileen M. Stark

To leave a comment, click on post’s title

 

 

 

New Study: Non-native Plants Reduce Insect Diversity

Acer circinatum (vine maple)

Natives like vine maple (Acer circinatum), surpass nonnatives for restoring biodiversity


As if we need further proof
, a new study published recently in Ecology Letters demonstrates that native plants are much better at supporting local insects than nonnative species, and that nonnative plants are exacerbating biodiversity loss with their inability to support many insect herbivores.

The researchers planted test gardens with both native and nonnative tree species and collected data over a three-year period. They measured the insect herbivore species and communities that were using the plants, and compared native trees to nonnative trees of two types: Those with close native relatives in the region and those that had no close native relatives.

They found that nonnative trees with a native relative (in the PNW, think nonnative scarlet oak, which is related to the native Garry oak) host and support fewer species of insects than the native counterpart, and that few of them were unique to that species of tree. The result was even more striking with nonnative trees that had no native relative in the region (such as golden chain tree, a European species).

The study also found that young insects, which are most supportive of an ecosystem, were found on the native trees. Adult insects, on the other hand, may be found on plants, but for various reasons—to rest, to warm themselves, breed, etc.

Essentially, when the diversity of insect herbivores—which are the basis of the food web—plummet, so too do all the species that rely on them for food. If you’re not particularly fond of insects, think of them as baby food: In spring and early summer, when insect eggs are hatching and larvae are feeding, most birds are wholly dependent on insects to feed to their young, as well as to keep their own strength up. And most other wild species rely on insect herbivores in one way or another. Even predators like bobcats need native plants, since they feed on wildlife that need insects and/or native plants to survive. 

So, this is more evidence that natives are the answer for restoring biodiversity, while most nonnatives are problematic. When selecting plant material—even in an urban area—choose plants that help the environment and its community members. Go for the native oaks, pines, maples, willows, etc., with their plethora of insects. There’s almost always a native option!

 

© 2015 Eileen M. Stark

To leave a comment click on post’s title

 

Damselflies: Live Fast and Die Young

northern bluet

This bright and handsome damselfly, resting on a stem of a columbine plant in my garden, is a male Northern bluet (Enallagma annexum), one of 466 species of damselflies and dragonflies found in North America. They make up the two main subdivisions of a very distinctive group of insects known as Odonata (Greek for tooth), which refers to their powerful and sharply toothed jaws, adapted for biting and chewing their prey.

Damselflies can be distinguished from dragonflies by their smaller size and their position when at rest: Damselflies typically hold their bodies horizontally, with their tear drop-shaped wings neatly and elegantly folded together over their abdomen, while dragonflies generally hold their wings flatly, outstretched and perpendicular to their body.

I’ve wondered about the common names. Since “damsel” conjures up an image of a fair maiden—most likely in distress—I imagine that the damselfly was so named because it is more delicate looking than a dragonfly and isn’t as tough and strong a flyer. Plus, proverbial dragons kept damsels in their caves, didn’t they? But now we need to ask, why are dragonflies called what they are? According to a 1958 book by Eden Emanuel entitled Folklore of the Dragonfly, it’s theorized that the common name emerged due to an ancient Romanian folktale, in which the devil turned a beautiful horse ridden by a saint into a giant flying insect. The Romanians supposedly called this giant insect (when translated into English) “St. George’s Horse” or “Devil’s Horse.” Peasants probably considered the Devil’s Horse a giant fly, and it’s surmised that they started referring to it as “Devil’s Fly.” Emanuel concluded that the Romanian name for Devil’s Fly was erroneously translated into English as Dragon Fly and this then evolved into the present-day “dragonfly.”

Gradual Metamorphosis

The female Northern bluet is generally greenish-yellow or tan, with a black abdomen. She lays her eggs in submerged vegetation; upon hatching—typically late spring to early fall—the young nymphs (or naiads) are small and wingless, but fully functional, so they don’t go through larval or pupal stages like most other insects do. Nymphs spend their time (often years) underwater in bogs, lakes, ponds, or rivers, where they molt (shed their skin) about a dozen times while growing. Fierce predators of aquatic organisms, they hide in submerged vegetation and attack the larvae of smaller insects such as mosquitoes and mayflies. When they are about an inch long, they crawl out of the water onto rocks or grasses and such. After a brief sunbath, their skin splits down the back and they struggle to pull themselves out of their shabby old skin one last time. Voila! Metamorphosis complete, they are now all grown up and it’s time to inflate their new wings and abdomen and harden fresh legs, all of which likely takes a lot of energy. Adults generally live less than two weeks, breeding and feeding—just enough time to live fast and die young.

Like dragonflies, damselflies’ large, bulging eyes have thousands of honeycomb-shaped lenses that give them an ability to see in all directions and make them formidable predators of other insects. Adults are swift aerial hunters, typically preying on mosquitoes, small moths, and various flies. Fascinating research shows that Odonata don’t dive and turn in reaction to their prey’s movements—instead, they are able to predict those movements before they happen. But what goes around comes around: Both damselfly nymphs and adults are consumed by birds, frogs, fish, and, yes, dragonflies.  Northern bluet

Conservation

Dragonflies and damselflies go way back, pre-dating dinosaurs by at least 75 million years. Fossils of ancient ancestors dating roughly 300 million years ago were gigantic—the largest insects ever to live—with wingspans of about 30 inches! Northern bluets are somewhat common damselflies, often found near freshwater—streams, rivers, and other watery places (even human-made ponds)—but their dependence on it makes them very vulnerable.

All damselflies and dragonflies are good indicators of the diversity and health of aquatic ecosystems, their presence suggesting that a body of water is fairly unpolluted. Destruction or alteration of wetland habitats, pollution, and pesticides are the greatest threats to Odonata species worldwide. Without clean water they cannot breed, and without insect life they cannot eat. Needless to say, as long as humans continue to allow alteration of their habitat through climate chaos, there will likely be a severe threat to future populations.

On pleasant, sunny days I often notice dragonflies and damselflies patrolling my organic, “real” garden. Should these brainy little hunters find their way into yours, consider yourself very fortunate!

 

© 2015 Eileen M. Stark

To leave a comment, click on post’s title

 

Attract Butterflies with Northwest Native Plants and More

Red admiral butterfly

It’s so delightful when a lovely butterfly (is there any other kind?) floats into our yard. Each year, as soon as June rolls around, I catch glimpses of gorgeous Western tiger swallowtails and orangey Painted ladies flitting here and there, as well as the occasional Mourning Cloak in the vicinity of our octogenarian American elm tree, one of its host plants. This summer I’ve noticed, for the first time, a Red Admiral butterfly (Vanessa atalanta) gliding in now and then. This species is reportedly rather territorial and will stay in one area for days or even weeks, so I hope to see her again. She’s apparently attracted to the heat radiating from the rocks on the west-facing side of our veggie garden, as well as the white trellis that supports our cucumber plants, and this morning she surprised me by landing on the white shirt I was wearing. She was near some native wallflower (Erysimum capitatum) plants growing nearby, but I’m not certain she used them.

Red admirals aren’t very fussy about habitat, but for food they prefer sap from trees, fermented fruit, and bird droppings—yes, you read that right—from which they obtain nutrients, such as amino acids and salts that are necessary physiologically, behaviorally, and ecologically. Many butterfly species and some other insects consume droppings as well, and don’t get me started on the fascinating spider that masquerades as bird poop to hide from predators. Flower nectar is actually a second choice for red admirals, who only forage at flowers—such as aster, milkweed, penstemon, fireweed and wallflower—when sap, fruit, and droppings aren’t available.

Beyond food

But as you may know, butterflies need much more than food to survive and reproduce; they need to be protected during winter and also need “host” plants on which they can lay their eggs. These can’t be just any old plants; they need to be the kind that their larvae can feed on (as their ancestors have done for millennia) as they grow into pupa (chrysalis), that awkward metamorphic stage before adulthood. Some butterflies aren’t terribly picky and may be able to lay their eggs on four or five different plant species, but others, like monarchs and red admirals, can use only one species.

My butterfly reference tells me that red admirals lay their eggs only on plants of the nettle family (Urtica spp.), something I’ve never grown. Uh-oh. As I began pondering where the heck in my yard I could grow it, I suddenly remembered a wonderful nettle soup that I had at an equally wonderful villa on the west coast of Sweden some years back. It’s not only edible; it’s one of those “super foods” that are extremely rich in nutrients and purportedly very cleansing.

So now I’m on a mission to grow some native stinging nettle (Urtica dioica)—maybe a bit for us to eat, but mostly for the butterflies. It turns out that the Satyr comma butterfly also uses only nettle as a host plant, although they are reportedly rather rare in parts of their range and it’s highly unlikely I’ll ever see one in my urban yard. I prefer to grow it myself, so that the wild stuff in wilder places can be left to the butterflies. But first I’ll have to carefully figure out where to plant it … and buy some stinger-proof gloves. Or maybe I should just stick with providing for species that don’t need such outrageously prickly plants.

© 2015 Eileen M. Stark

To leave a comment, click on blog’s title

10 Great Northwest Native Pollinator Plants for Summer

Bombus vosnesenskii

In honor of National Pollinator Week, let’s zoom in on the bees and other hard-working pollinators whose lives are dictated by weather, season, and the availability of food, nesting habitat, and overwintering sites.

Nature has provided pollinators with unique ways of gathering nutritious pollen and nectar for their young, and they’re enthralling to watch. But bees and other pollinators are in terrible trouble worldwide due to our presence and actions. We can give back to them by growing flowering native plants in our gardens (as well as noninvasive exotics that are especially attractive to bees, like lavender and sunflower) with consecutive blooms from early spring till fall. But don’t forget to provide for them during all their life stages — not just their adult stage — by leaving the leaves, dead wood, and spent flower stalks to make sure they can get through the winter and have habitat to raise their young. And, no pesticides whatsoever!

If you’ve already included some native plants in your yard, you’re well on your way to providing for a wide variety of wildlife. Offering a variety of flower shapes, colors, and sizes, with smaller plants in groups of at least three of the same species (like a big, obvious “Eat” sign) will help provide for many different types of pollinators—from long and short-tongued bumblebees and syrphid flies to hummingbirdsbeetles and thrips. Below are some Pacific Northwest native herbaceous perennials and shrubs that offer food for pollinators from early to mid or late summer in the Pacific Northwest, west of the Cascades.

The list is just a sampling (read about others in my book or within my blog’s PNW native plant profiles), and the species were chosen because they naturally occur in large parts of the region, are generally easy to grow, aren’t too hard to find at native plant nurseries (although you may need to call around for availability), and attract their fair share of native pollinators. I’ve listed them alphabetically with some basic care guidelines. Fall planting is best, as winter rains begin. (If you’re reading this in springtime, don’t worry—you can plant now, but you’ll definitely need to keep an eye on their water needs during the first couple of summers, at the very least.)

As always, plan ahead and choose plants that fit your light, moisture, and soil conditions, but also choose those that are appropriate to the natural landscape—that is, look to nearby natural areas and add flora that likely would have grown in your area historically. You can also search for a species’ natural range (to county level) here, or check with your local native plant society chapter or county soil & water conservation district. Growing them with associated species that evolved alongside them in nature will help them thrive. No fertilizer is necessary (although a one-time addition of compost such as leaf compost to the soil will add some nutrients and improve soil structure), but do keep them adequately hydrated until they’re established (2 to 5 years). Enjoy!

◊ Achillea millefollium var. occidentals (Western yarrow): Perennial. 1-3 feet tall x 1-3 feet wide. Sun to part sun. Not fussy about soil; moist or dry (will spread faster with more moisture). Spreads by rhizomes and seed. Flat-topped clusters of white, fragrant flowers bloom nearly all summer. (Not to be confused with the Eurasian Achillea millefolium var. millefolium).

Asclepias speciosa or A. fascicularis or A. cordifolia (milkweed) : Perennial. 2-3 feet tall x 2-3 feet wide. Sun to part shade. Moist, well-drained soil, but can handle some drought when established. Rounded clusters of soft pink, fragrant flowers. Check out the Xerces Society’s info on milkweed of Oregon and of Washington. (A. fascicularis is pictured, right)Asclepias fascicularis

Campanula rotundifolia (common harebell): Perennial. 1-2 feet tall x 1-2 feet wide. Sun to part sun. Well-drained, moist to dryish soil. Spreads slowly by rhizomes or seed. Bell shaped, violet-blue blossoms.

Ceanothus velutinus (snowbrush): Fast growing evergreen shrub. 6-12 feet tall x 6-12 feet wide. Sun to part shade (intolerant of full shade). Rich or poor soil; very drought tolerant. Dense pyramidal clusters of tiny, fragrant white flowers. Occurs mainly at mid to high elevations; check natural occurrence, to county level, here.

Erigeron speciosus (showy fleabane): Perennial. 2 feet tall x 2 feet wide. Sun to part shade. Well-drained, moist to dry soil. Lovely and abundant daisy-like, bluish lavender blossoms go nearly all summer. (pictured below)

Erigeron speciosus

Holodiscus discolor (oceanspray, aka cream bush): Fast growing, very attractive deciduous shrub. 8-16 feet tall x 8-12 feet wide (larger on protected sites, smaller on windy, harsh sites). Sun to part shade (intolerant of full shade). Not fussy about soil; moist or dry. Drought tolerant when established. Lavish, feathery plumes of creamy-white flowers in early to mid-summer. Nice for hedgerows. Controls erosion.

 

Lupinus polyphyllus (large-leaved lupine): Perennial. 2-4 feet tall x 2-4 feet wide. Sun to part shade (intolerant of full shade). Moist soil preferred but will tolerate short dry periods. Tall spikes of bluish-purple, pea-like flowers. (pictured, right) Lupinus polyphyllus

Sedum spathulifolium or S. oreganum (stonecrop): Perennial. 1-4 inches tall; spreads slowly. Sun to part sun (afternoon shade is welcome). Well-draining, gritty, lean soil. Bright yellow star-shaped flowers. Nice for rock gardens. Not a ground cover for foot traffic. (S. spathulifolium pictured below)

Symphoricarpos albus (snowberry): Deciduous shrub. 4-6 feet tall x 4-6 feet wide. Sun to mostly shade. Moist or dry soils; tolerates heavy soils. Drought tolerant when established. Tiny, paired, pink, bell-shaped flowers. Eventually forms a thicket. Controls erosion.

Tiaralla trifoliata (foam flower): Perennial. 8-14 inches tall x 1-14 inches wide. Shade to part shade. Spreads very slowly by rhizomes or seed. Needs moist, well-draining soil rich in organic matter. Panicles of white to pale pink flowers bloom from late spring to late summer. More details here.

Sedum spathulifolium with syrphid fly

 

Copyright 2015 Eileen M. Stark

To leave a comment, click on blog’s title

 

Pacific Northwest Native Plant Profile: Bear Grass (Xerophyllum tenax)

X. tenax up close

When I mention bear grass, people familiar with the plant usually light up as if its creamy blossoms were right in front of their face. I’m lucky to have one in full bloom right now in my backyard (yes, just one—I have more, but they’re too young to bloom). Bear grass typically takes many years to flower, so I am savoring this one as much as possible. En masse in nature they are quite a vision, and even when not in bloom they make a lovely, luminescent, soil-stabilizing ground cover. But don’t you dare even think about taking even one plant from the wild.

X. tenax on Larch MountainBear grass, a common name for Xerophyllum tenax, comes from observations that bears like to eat the young fleshy stems, and Grizzly bears reportedly have been known to use bear grass leaves in winter dens during hibernation. It’s a popular plant for many other species who use it for food or cover: from bees and beetles to rodents and elk. Though not a true grass, other common names include Indian basket grass, deer grass, elk grass, and soap grass (not sure where the latter came from!).

The botanical name comes from the Greek xero (dry) and phyllon (leaf), and the Latin tenax (tough or tenacious). It’s an evergreen member of the corn lily family (Melanthiaceae), a group of flowering perennial herbs native to the northern hemisphere. I’ve included bear grass in my book even though it’s not terribly easy to grow. When it does establish, it spreads (very slowly) by forming offsets and by seed.

Long, skinny, and rather wiry leaves arise from the rhizome in clumps. Their edges are rough and finely serrated and it’s their toughness that helps the plant minimize water loss during periods of drought, as well as insulate it from frost.Xerophyllum tenax (foliage)

Flowers open from the bottom up, so that the inflorescence, which ranges in height from two to five feet, takes on many different shapes as it matures. Flower fragrance varies; one study reported that one-fifth of bear grass flowers in their sample had a sweet smell like cultivated lilacs, while the others smelled “musty-acrid.” The one now blooming in my yard is, thankfully, the former, although not as sweet as lilacs.

After the blossoms fade away the flowering plant usually dies, but the long-lived rhizome lives on and offsets bloom when they are mature enough. Its fruits are three-lobed dry capsules, about ¼ inch in length, that contain 6 or 7 beige seeds, which may be eaten by migratory birds prior to fall flights. They may be sown in late summer, fall or winter and need at least 12 weeks of cold stratification.

How it grows
Bear grass grows naturally in a variety of conditions—in cool, moist meadows and bogs, and mixed-coniferous forest openings in most of western Washington and Oregon, coastal areas of northern and central California, northern Idaho, parts of British Columbia and Montana, and a snippet of Wyoming. I’ve come X. tenaxacross it on hikes in the Oregon Cascades near trees such as Douglas-fir, Western hemlock, or mountain ash, and among smaller species like huckleberry, bunchberry, fawn lily, star-flowered false solomon’s seal, inside-out flower, foamflower, and woodland strawberry.

It’s often found growing on slopes (in soil that’s not particularly rich) that are moist during winter and spring, but fast draining. I grow mine on a south-facing slight slope, in partial shade. The soil’s a bit rocky and has been amended with leaf compost. Large rocks nearby help keep roots cool and moist. During very warm and dry periods I give supplemental water, especially when plants are young.

Conservation

For centuries, Native Americans valued bear grass and used it sustainably for basketry and decoration, and ate the roasted roots. Today bear grass is having a very tough time surviving with our myriad modern threats: Logging and other habitat loss, introduced forest pathogens and insects that affect associated species, fire suppression, and the floral industry that recklessly collects it for lucrative commerce (much of it is exported). If you know of a florist who uses bear grass, ask them where they got it and explain the disastrous ramifications if necessary. Never take this plant (or any other native plant) from the wild.

Bear grass is a fire resistant species that is often the first plant to grow after a fire. Like many other native plants, it needs periodic burns for strong new growth. Following a light fire that increases light, growing space, and soil nutrients, bear grass sprouts from its rhizomes, which lie just under the soil’s surface. But when fires are suppressed—often due to timber industry management—the result is fewer but much more intense fires that kill rhizomes, making it impossible for the plants to come back.

X. tenax closeWildlife value
All of these perils affect not only the species directly, but also its pollinators—nearly 30 species of flies, beetles, and bees, and possibly some butterflies, moths, and wasps. Besides pollinators, bear grass also provides food for rodents, deer and elk, and even mountain goats at higher elevations, as well as other habitat components, such as nesting material for birds, mammals, and insects—all of which are essential, interconnected ecosystem members. More info on conservation here.

Beargrass’s only close relative, X. asphodeloides, grows in the southeastern part of the U.S.

 

© 2015 Eileen M. Stark

To leave a comment, click on blog’s title

 

The Beauty of Fawn Lilies (Erythronium spp.)

Erythronium oregonum

The genus Erythronium, commonly known as trout lily, fawn lily, glacier lily, or dog-tooth violet (depending on the species and your location) offers such elegance that I can say with conviction that it is my favorite spring wildflower. Single plants charm and invite close scrutiny, but when found in drifts their collective luminescence completely captivates me. Let their magic entice you, too.

About 20 species of Erythronium are found worldwide and most occur in the western U.S. The botanical name comes from the Greek Eruthros, which means red, and refers to the pink or reddish flowers of some species. The photos in this post, which I took in my garden, show the pagoda-like flowers of Erythronium oregonum (Oregon fawn lily or giant white fawn lily), which naturally occurs in moist to dry woodlands and grasslands at fairly low elevations in southwestern British Columbia and Washington and Oregon (west of the Cascades), as well as parts of northern California. No doubt the Georgia Basin, Puget Trough, and Willamette Valley were once thoroughly adorned with them.

What appear to be recurved petals are technically tepals (a term used when petals and sepals cannot be differentiated)—white to pale yellow, with a gold heart in this species. Paired leaves that hug the earth are oblong and mottled, and gorgeous on their own. The only downside of this native plant is its ephemeral nature: Like most perennial bulbs, it goes dormant in summer. But when the flowers fade away in my low elevation garden, I know I can always venture to a higher elevation and find it, or a closely related species, quietly in bloom a month or two later.    E. oregonum

How it grows
Pollinated by native bumble bees, butterflies, moths and hummingbirds, this endearing plant thrives in partial shade (but not deep shade) with well-drained, slightly acidic soil that’s rich in organic matter—imagine the dappled shade of an open forest or wooded grassland where fallen leaves and other organic matter are allowed to accumulate. That said, I have several growing where they get very little direct sunlight and they appear quite happy, blooming each year (although not prolifically). They’re also found naturally in rocky areas, so look lovely planted in partly shaded rock gardens where their bulbs can stay cool during summer.

Try it at home
Though not a true lily, Erythronium species are easy to grow and trouble-free, as long as you are aware of their needs. If your yard is lacking rich topsoil, add well composted leaf mold before planting and don’t remove light layers of fallen leaves from the top layer of soil. Bulbs should not be allowed to dry out completely, but they may rot with consistently moist conditions, so be sure they’re placed where the soil drains well. Keep soil just slightly moist during the dry summer months of the Pacific Northwest.

They look best grown en masse, as found in nature. Plant them at the same depth (or slightly deeper) that they came in their pots, or about three to four inches deep. The bulbs are extremely delicate, so don’t try to move them after they are planted unless you can dig up a big chunk of surrounding soil without disturbing the roots, bulb, and stem in any way.

As far as propagation goes, bulb division in your garden is possible but not recommended—if they are planted in appropriate conditions they will sow themselves. Or, you can help them along by collecting seeds from their capsules after the seed has ripened and the flower scape splits; I once shook out 50 seeds from one dried flower capsule! You can sow the seeds immediately outdoors if they are dry enough, or keep them in a cool, dry place and wait until late summer to sow them (but don’t wait much longer, as they reportedly do not keep well): Fill a deep container or pot with a well-draining soil mixture. Press the seeds onto the soil and cover with coarse grit, then leave them outdoors to expose the seeds to cold/wet of winter. In springtime they will germinate and a single cotyledon will emerge. The second year, a single leaf will grow. Carefully separate the tiny plants during the end of the second or third summer (no earlier), repot, place in a bright, cool location where the plants can be kept moist during winter and spring and just slightly moist during summer. Patience is needed, though—it can take as long as five years until first bloom. Some species will multiply vegetatively if the flowers are carefully removed soon after flowering, which prevents energy going into seed production and instead into making more bulbs underground. If you have optimal conditions, you may find that they will self sow around your garden.  (2022 UPDATE: Six years after this post was written I can say with confidence that these lovely plants have indeed sowed themselves around my mostly native back yard.)

Grab a partner
E. oregonum can be found growing with other natives such as Garry oak, (Quercus garryana), Oregon ash (Fraxinus latifolia), oceanspray (Holodiscus discolor), snowberry (Symphoricarpos spp.), sword fern (Polystichum munitum), camas (Camassia spp.), and various native grasses. Placing them under deciduous trees that allow early spring sunshine to nourish them but provide protection later on is optimal, but be sure not to plant them where some leafy, overly zealous understory plants will cover their leaves during spring (such as western bleeding heart)—I learned that the hard way. Substitute fawn lilies for bulbs like invasive Spanish bluebells that seem to be in almost every yard in my neighborhood.

Some related species: Erythronium revolutum (pink fawn lily) occurs naturally in moist coastal forests near shaded streams and in bogs; it is a “species of concern” in Oregon. A higher elevation species is E. montanum (avalanche lily, white avalanche lily) that is native to coastal B.C. and alpine and subalpine Olympic and Cascade ranges. Erythronium grandiflorum, or glacier lily, with gorgeous yellow flowers, is also found in alpine and subalpine meadows and does best at those elevations. E. hendersonii (Henderson’s fawn lily) occurs at low to mid elevations in the Siskiyou Mountains of southwest Oregon, while E. elegans (Coast Range fawn lily) is a threatened species that grows only at high elevations of Oregon’s Coast Range.

Enjoy! But please … never collect Erythronium seeds or plants from the wild.

E. oreganum

 

 

© 2015 Eileen M. Stark

To leave a comment, click on blog’s title

A Native “Shamrock”: Oxalis oregana

Oxalis oregana

Happy St. Patrick’s Day!

The shamrock legend can be traced to the 5th century saint who used a three-leaved plant—possibly white clover (Trifolium repens)—to demonstrate the concept of the Christian trinity. Today, oxalis cultivars, or any plants with tripartite leaves labeled as shamrocks, are sold as houseplants or outdoor plants.

Our Pacific Northwest native Oxalissometimes called wood sorrel—is a beautiful ground cover for mostly shady areas (but also more open, shrubby areas) at low to middle elevations. It has edible leaves high in oxalic acid (like spinach), and forms a lush carpet in moist to dry woodlands.

Three wood sorrel species that occur naturally in the region are Oxalis oregana (wood sorrel or Oregon oxalis), O. suksdorfii (western yellow oxalis, which occurs mainly in southwestern WA and Oregon at low elevations), and O. trilliifolia (trillium-leaved oxalis). When deciding which species to grow, pick one that naturally occurs in your area (see map links in previous sentence).

Wildlife value
Oxalis is a pollinator plant, offering its charming small flowers to native bees, syrphid flies, and butterflies. Like most flowering plants that grow under low light conditions, its blossoms are white or light colored to enable pollinators to be able to easily see them. Later in the year, Oxalis seeds may be eaten by seed-eaters like sparrows and small rodents. Its leaves serve to protect and enrich the soil.

Try it at home
Grow it in the shade of tall trees like Douglas fir and with other native woodland species such as Vaccinium spp. (huckleberry), Mahonia nervosa (Cascade Oregon grape), Gautheria shallon (salal), Polystichum munitum (sword fern), Prosartes spp. (fairy bells), Trillium ovatum (western trillium), and others.

Give it moist, acidic soil (pH 5 to 6.5), preferably rich in organic matter. While morning sun is welcome, it typically won’t do well with scorching midday or afternoon sun. In full shade and once established, it is a drought tolerant plant. Be sure you like it, though, because it will spread—enthusiastically, in the right conditions—to protect the soil and soil dwellers.

Oxalis oregana

 

© 2015 Eileen M. Stark

To leave a comment, click on blog’s title

Hummingbirds Nest in Native Gardens

Photo © Richard P. Weber 2015

As I looked through our living room window about two weeks ago, I caught sight of a female Anna’s hummingbird as she zipped by and landed on a tall rhododendron shrub ten feet away. As my eyes focused, I realized this was no ordinary perch: It was a nest, barely the size of a demitasse cup, that was apparently in the final stages of construction.

This exciting revelation reminds me of why I garden: For life! I had known, of course, judging by the number of hummingbirds feeding in our area and their relatively small territories (males defend about a quarter of an acre) that they must raise their families close by, but I had never actually seen a nest in our yard and I never went searching for one, for fear of causing disturbance.

Without delay, my husband began to document her nest building, keeping out of her flight path and with a powerful camera lens. The first photos show a nest perhaps an inch tall; less than a week later she had clearly added on more material to its height. Through binoculars and over several more days I Anna's hummingbirdoccasionally watched as she molded the nest by pinching materials — plant fibers like moss, bark, bits of leaves bud scales, and lichen, as well as feathers or fur, all held together by spider (or caterpillar) silk — between her bill, chin region, and chest while rotating her body. The interior was stomped on by her impossibly tiny feet. Nature’s silk is strong, sticky and stretchy (able to stretch up to 40 percent of its length without breaking), and helps make a nest that is flexible, expandable, and able to accommodate rapidly growing babies. The latest photos show that extra lichens were added as a finishing touch for camouflage (although I like to think that she added them as a charming decoration as well!).

One day I realized she was spending almost all of her time on the nest, leaving only for 20 to 60 seconds to grab a bite to eat. Incubation had begun! For the past 14 days she’s been patiently incubating her two eggs, which should hatch in as little as a day or two (incubation periods range from 14 to 19 days for these hummingbirds). MAJOR UPDATE: Baby pictures are here!

Hungry mouths
Anna’s hummingbirds eat nectar from many flowering plants, including native cascara and black hawthorn trees, currant, gooseberry, and manzanita shrubs, and many introduced species as well. Our little Anna’s timing was impeccable: Ribes sanguiniumShe chose to place her nest within 20 feet of two native red-flowering currant shrubs that had just begun to bloom. Besides currants, other native early bloomers important to these solitary birds include osoberry and Oregon grape. Later on they’ll be attracted to the flowers of native huckleberries, ceanothus, twinberry, serviceberry, elderberry and salal shrubs, honeysuckle vines, and perennials like camas, goatsbeard, delphinium, alumroot, penstemon, nodding onion, campanula, fawn lily, tiger lily, columbine, monkey flower, and milkweed. But Anna’s reportedly eat more protein-rich animal matter than other hummingbirds, consuming a wide array of small insects and spiders, plucked mid-air or from spider webs, crevices, or from trees and shrubs; native plants supply drastically more animal matter than non-native plants. Their young must be feed such foods; they cannot develop and grow solely on nectar. Occasionally hummers will also lap up tree sap leaking out from holes made by woodpeckers, and I’ve seen them sip the sweet juices leaking from overly ripe figs.

A Little History
Anna’s Hummingbird (Calypte anna) was named after a 19th century Italian duchess, Anna De Belle Massena, by René Primevère Lesson, a French surgeon, naturalist, ornithologist, and herpetologist. Such an appropriately aristocratic name for a sparkling little bird!

Historically a Pacific slope species that overwintered from San Francisco to Baja California, Anna’s are now fairly common year round in urban and suburban settings as far north as British Columbia, as well as wilder places such as open woodlands, chaparral, coastal scrub, and oak savannas. Since the change in range was relatively recent—only since the 1970s—and not a result of evolution, it is believed to have resulted from folks in the northern areas leaving artificial sugar water feeders up year round.

Conservation
While Anna’s hummingbirds are not considered endangered or threatened and can survive fairly comfortably in marginally developed areas, they are susceptible to many threats, including habitat loss, pesticides, predation, window collisions, harsh winter weather, and sugar feeders that have gone bad (it only takes a day or so in the right conditions!). Natural flower nectar is greatly superior to white sugar/water mixtures because it supplies micronutrients and spoilage is never a concern.

Because these birds (and other species) eat a large quantity of insects, don’t use insect traps and pesticides that lessen the amount of forage available for them. Spider webs, which hummingbirds collect food from and use as nesting material, should be left intact whenever possible.


© 2015 Eileen M. Stark

 To leave a comment, please click on blog’s title

Love in the Trees, Chickadee Style

Black-capped chickadee

It’s nearly Valentine’s Day, so here’s a bit about the love life of a little bird  — the black-capped chickadee — who is such a joy to have around. Let’s start late in the year, when black-capped chickadees typically spend their time in flocks.

Birds of a Feather
Flock formation typically starts in autumn, although it may begin earlier at high elevations or more northerly latitudes. Anywhere from two to eighteen birds may make up a flock in a territory of more than a dozen acres, with six to ten members most likely. Flocks contain adult birds who bred the previous season, “floaters” (those who didn’t get lucky or belong to more than one flock), and young chickadees born that year who’ve immigrated from other areas (to keep the gene pool diverse). Members feed together by day and roost together at night (but individually—chickadees don’t like to snuggle), but all is not calm and congenial.

Exceptionally complex social behavior occurs in winter chickadee flocks. Each member falls into a linear pecking order, with higher-ranking individuals surviving better than those ranked lower. Birds at the top of the hierarchy get the best of everything—the most nutritious food, the safest cover, the finest breeding sites. The order has a purpose: To ensure that the strongest birds can breed in ample territory that provides enough food for their young to survive and thrive. Flock members keep in touch with each other using various calls, so that no one’s left behind.

If you watch closely, you may see evidence of dominance relationships. Unlike many other birds, chickadees keep their distance from one another and that distance is maintained by faint threats. For example, a dominant bird may fluff out his cap feathers or all of his feathers to try to intimidate a subordinate bird. Or he may go further and utter a short but fierce call. If the subordinate bird doesn’t fly off he may lean away or quiver his feathers (like a baby bird asking for food) to ward off further offensive behavior.

Rank is determined by several factors:
◊ Gender: Males tend to rank higher than females, although this changes during breeding season.
◊ Age: Veterans usually overrule very young birds.
◊ Timing: Birds who join a flock late in the season tend to tumble to the bottom of the hierarchy.

Matchmaker, Matchmaker
Studies have found that male-female pairs within flocks are matched in their rank status—that is, a high-ranking male is paired with a high-ranking female, a not-quite-so-popular male is paired with a not-quite-so-popular female, etc. Remind you a little of high school?

But wait—pairs within flocks? Doesn’t the pairing-off begin just before breeding season (in the spring)? You’d think so, but black-capped chickadees are way ahead of us. Researchers have found that most flocks are initially made up of equal numbers of males and females, each of which spend more time associating with a certain member of the opposite sex than all the other members of the flock (in other words, they’re engaged!). Even the youngest flock members reportedly pair off, and it’s the female who decides which male will win her affection, as is the case in most of the animal kingdom. If a bird’s mate dies during the winter, however, mate selection is put off until springtime.

The Newlywed Game
Chickadee couples begin casually house hunting before the winter flock breaks up, even as early as mid-winter (depending on the weather). As spring approaches, their search becomes earnest and they compete — often fiercely — with others for a smaller spring/summer territory within the larger winter territory. Around this time the male begins to catch food and present it to his companion and their first “fee-bee” songs are sung, which helps couples claim their territory.

Photo © Richard P. Weber

Chickadees are cavity nesters: They nest in cavities like holes in dead or dying trees (snags), rotted knotholes in living trees, or previously used woodpecker holes. When natural sites are scarce they may use a hole in the ground or an artificial nest box, as they do in my backyard. Artificial nest boxes are not as good as nests in real trees because they are poorly insulated, but it they’re kept clean and are sited appropriately they may be better than nothing, especially in areas like mine that typically don’t get terribly cold or hot in springtime and don’t have many snags.

Chickadees prefer to create their own nests by digging out pieces of wood and then discarding the debris elsewhere to discourage predators who may view a pile of telltale wood chips as a ticket to a potential dinner. Both Mr. and Ms. Chickadee explore their territory for nest sites and reportedly it’s common for several to be partially excavated before a decision is made. A power struggle often follows, culminating in presentations with much fanfare and bickering.

After the site is decided on (usually by the female), both members of the pair excavate the hole and bring in nest material, but, according to my reference, it is the female who builds the actual nest and my personal observations corroborate this. Using strips of bark, moss, and other coarse material, she quietly creates a cup-shaped nest. It is then lined with soft material such as mammal fur (she uses my “fur dispenser” — a clean suet container filled with fur donated by especially soft cats — that I put out for them and other birds when I see signs of nest-building. Note: If you choose to do this, never offer fur that’s been treated with chemicals like flea treatments). At this point the dedicated male is still sweetly feeding her, but it will be during Gathering mossthe next phase of their relationship—the egg-laying period—when she will need him the most. Egg laying is immensely draining on a female’s energy reserves and her partner’s support is essential for her health, as well as that of their young. She needs to eat frequently, and during this time I sometimes see the male come near the nest and perch, singing a soft fee-bee song. She then flies to him, utters a tiny, high-pitched begging call and does a little wing-quiver. Dad then feeds her and she returns to her incubation duties in the nest. Sometimes he simply feeds her at the nest box’s entrance. If he’s not around, she may take matters into her own wings and forage briefly for herself. 

For the past seven years we’ve put up our clean, chickadee-appropropriate nest box every March and it’s been utilized every year but one (and that was due to an overzealous downy woodpecker who enlarged the entrance hole but later decided not to use it; by then the chickadee pair had found another spot). To mimic a natural nest and help attract the birds to it, we add about an inch of coarse wood shavings in the bottom of the box and watch the expectant parents excavate the box for a couple of days. Then Mom brings in loads of moss and finally cat fur to make a soft, cozy nest for her babies. The entire project takes a few days to a week.

Black-capped chickadee feeding his mate

On average, chickadees lay six eggs (we’ve had four to eight) and incubation usually begins the day before the last egg is laid, so that all but one hatch on the same day. During their 12-day incubation, Mom is fed often by Dad, either directly at the nest entrance or outside on a perch, following his soft call to her.

After the eggs hatch, the young are completely helpless, nearly naked and entirely dependent on their mother for warmth. Bringing home the food (mostly caterpillars) is Dad’s job for the first few days, and it’s intense, since each baby needs to eat several times an hour during the day. Later on, the female also forages for her babies. According to my reference, the mother begins providing food around day twelve, but this is not accurate; I’ve seen both the male and female bringing food to the nestlings at day five or six; possibly this is due to the warmer temperatures in our region (as opposed to the eastern US, where spring comes later). Both parents efficiently remove poop sacs from the nest to keep it clean and drop them away from the nest to deter predators.

Want to help these endearing couples?
Black-capped chickadees are usually found at forest edges, and they need native, mature trees—both deciduous species in which to forage for insects and build nests, and coniferous types for cover and winter food. If you don’t have mature native trees and shrubs in your area, there’s no better time to plant than now! And while natural cavities are best for nesting, consider supplying a nest box for them if you don’t have snags around. Site it in a partly sunny situation (morning sunlight is optimal) and put about an inch of coarse wood shavings in the bottom. The entrance hole diameter should be 1⅛ inches (to keep out house sparrows), without a perch, and faced away from prevailing winds. One box per acre or two is plenty, since they need a large territory in which to find adequate food, although high quality habitats will support more breeding pairs. Be sure to clean the box after each breeding season is over. I like to take it apart, scrub inside surfaces with hot soapy water, rinse well, and then set those surfaces in direct sun for a day or two. We store our box indoors during the fall and winter and put it up again in March to prolong its life and prevent mold growth.

Besides trees, provide clean water and, if your native plants are young, food during winter—chickadees are fond of unsalted peanuts, black-oiled sunflower seed, and suet, which is high in fat (they love my vegan peanut butter-coconut oil-sunflower seed concoction), but they also consume berries, insects, and spiders found on shrubs and trees. Spring through fall, though, nearly all of their diet and their babies’ diet is animal—such as insects, their larva, and spiders. It can take as much as 9,000 bits of food to successfully rear their nestlings, and native plants are best at providing it. Try to grow at least 70 percent locally native plants. 

♥♥♥

Reference: Smith, Susan M. 1997. Black-capped Chickadee. Stackpole Books, Mechanicsburg, PA.

© 2015 Eileen M. Stark

To leave a comment, click on post’s title

 

 

Anatomy of a Functional Garden

Garry oak (Oregon white oak)

Get out your pencils and notebooks, class. It’s time for Anatomy Lesson One: Structure of a Functional Garden.

Just as our bodies’ structure relies on interconnected units like bone and muscle, so do ecosystems and the little parts of them we call gardens. The main framework of a garden (above the soil line) is made up of the obvious counterpart to bone—woody plants, like trees and shrubs, as well as manmade elements like buildings, fencing, and pergolas. A site’s location and topographical features, such as steep slopes or rocky outcrops, can also have a substantial effect on its structure.

There’s quite a bit of similarity between bone and wood; both have the ability to provide function as well as beauty (as revealed in this quip by the saucy Miss Trixie Delight, played by Madeline Kahn in Paper Moon: “When I was your age, I didn’t have no bone structure. Took me years to get bone structure. And don’t think bone structure’s not important!”). It’s beyond important, Trixie—a strong skeletal system is crucial. And, yes, it does take years to arrive; so the sooner you get a start on structure, the better.

When ecologists speak of structure they’re concerned with the entire community of species existing in a particular area, as well as nonliving components like rock and water. This post focuses mainly on living structure that provides a garden’s framework, as well as habitat for wild ones.

Seasonal interest
A garden should be a place we want to go to no matter the time of year, and structure provides the invitation. It’s helpful for creating gradual transitions, for dictating chickadee on aspen treehow our eyes travel through a space, for providing unity, balance, and crucial wildlife habitat. And structure can rev up “curb appeal”: A house looks best when it softly blends into a landscape and one way to do that is by nestling it within or framing it with medium to large trees (size being dependent on the dimension of your house and yard), but not completely hiding it. Trees should be planted a minimum of ten feet from buildings, preferably more. They offer myriad other benefits, like shade on sultry summer days (particularly when placed to the southwest of a house), protection of the soil, mitigation against climate disaster, and improved drainage for other plants tucked underneath. Besides structure, native trees and shrubs provide essential food and shelter for both flora and fauna.

Life does not occur in isolation
Other interconnected elements contribute to landscape structure, just as tendons, ligaments, and fascia contribute to ours. A single tree in a sea of lawn will not attract and support nearly the number of species that a grouping of trees, shrubs, and smaller plants will, nor will it create the same amount of interest for us. Beneath trees (but not too close to trunks) grow shrubs and perennials—in a layered effect—that will provide vertical and horizontal connections. This creates a natural look and provides safe cover for feeding, resting, or wandering wildlife. Nature likes to get all tangled up so that order looks a bit chaotic, so don’t be afraid to grow plants fairly close together as you’d see in the natural world; I recommend slightly closer than mature width apart to facilitate a bit of overlap.

Non-living elements, like arbors, trellises, water features, snags, nest boxes and even spider webs can add to the skeletal framework of the garden and provide ecological function, such as by supporting vines. I’m currently training a lovely pink-flowered, fuzzy-leaved native honeysuckle (Lonicera hispidula) on a large trellis that obscures the compost bins under our deck, and I have big plans for its orange cousin, Lonicera ciliosa, to clamber up a native rose. No doubt structure in the gardenthe bees and hummingbirds will be very pleased with their flowers. Keep manmade elements to a minimum and keep them simple to achieve a sense of flow and to complement—not overpower—the plants.

If there’s a garden (or natural area) that you are particularly fond of, chances are it’s because it has a pleasing framework to which other landscape elements are connected. Like the myriad connections in our bodies, structure helps bring cohesion to a landscape.

 

© Eileen M. Stark 2015

To leave a comment, please click on the blog’s title

 

Winter Light, Winter Life

Tualatin NWR

Do you long for spring? Fantasize about those warm summer evenings when the sun stays up past nine o’clock? Deny that winter has yet to officially start? Realize you’re eating dinner and curling under the bed covers earlier than just a month ago?

I’ve got it bad. Yesterday I found myself inspecting shrub and tree branches for next year’s growth and scanning the ground for the first spring bulbs. But here’s some good news: The days are beginning to lengthen again. Sure, we’re talking just minutes gained each day following the solstice, but it’s a start and I’ll gladly take every extra moment of daylight!

Winter is often thought of as a time of slumber—not just for us to catch a few extra winks, but also for the garden. While the cold, short days do tend to reduce some of the obvious vivacity of nature (especially in far northern, frozen latitudes), even in midwinter and beneath snow scientists have found that the soil thrives with living, breathing, developing microbes, some of which can freeze without harm. In the Pacific Northwest, our gardens are anything but sleepy. Amidst the amazing hubbub of microbial activity that helps provide a growth surge in springtime, plants’ roots are slowly developing in preparation for the demands of next year.

But since most people lack a keen interest in soil science, it’s the above ground doings that grab our attention. The “architectural” plants and other elements that remain standing all winter create the “bones” of the landscape, although texture, color, and movement enhance the view as well. I especially like to add such interest to areas that are frequently viewed, such as near an entryway or outside a cozy window seat. Wildlife appeal is also vital.

Native coniferous trees like cedar, fir, and pine are popular because they’re always green and provide framework and privacy, but what may be most captivating is the texture of their foliage—especially lovely holding onto snow, however fleeting that may be in our neck o’ the woods. Broadleaf evergreen trees like Pacific madrone (Arbutus menziesii) and shrubs, including the glossy-leaved Gaultheria shallon (salal)evergreen huckleberry (Vaccinium ovatum), Oregon grape (Mahonia spp.), and salal (Gautheria shallon, pictured right), along with winter-blooming silk tassel bush (Garrya elliptica and G. fremontii), provide interest in all seasons. In sunny ground level situations, kinnikinnick (Arctostaphylos uva-ursi) carpets the soil and cascades over rock walls with its attractive evergreen leaves and red fruits that persist into fall and beyond. In shade, the heart-shaped and often evergreen leaves of ground-hugging wild ginger (Asarum caudatum) usually inspire smiles.

Blechnum spicant (deer fern)Intricately divided fronds of the lovely deer fern (Blechnum spicant) hang around all winter, while  licorice fern (Polypodium glycyrrhiza), a charming summer-deciduous type, is often found growing lushly amongst mosses and dead wood or rocks. Speaking of deciduous, some shrubs just can’t wait until spring to bloom—like the wind-pollinated California hazelnut (Corylus cornuta var. californica) that flowers in January. Others—osoberry (Oemleria cerasiformis) and red-flowering currant (Ribes sanguineum) in particular—bloom at the cusp of spring.

Plants with colorful twigs or bark can steal attention, too, especially when planted en masse. Cornus sericea and other “red twig” dogwoods have an almost fiery bark that stands out, particularly against pale or very dark backgrounds, and the gorgeous burnt-orange bark of madrone trees (Arbutus menzeisii) peels to reveal smooth, olive-colored trunks and branches, and not just in winter. Snowberry (Symphoricarpos albus) gleams with its white, berrylike drupes, and wild roses, including Rosa pisocarpa and R. nutkana, produce strikingly red rosehips.Arbutus menziesii (madrone)

Elements of movement can be an enjoyable part of the winter landscape, too. Popular plants that provide a rustling motion as winter winds blow include grasses, such as Festuca idahoensis and Deschampsia cespitosa, which look best planted in swathes, and western sword ferns (Polystichum munitum) with their tall, tough fronds. While they are great accents any time of the year, grasses and evergreen ferns might be most impressive during the humdrum days of winter when they also provide structure and intriguing texture.

Needless to say, the best way to liven up the landscape is to encourage the presence of birds and other wildlife in the garden, and the best way to do that is with native plants that naturally occur in your region. To supply food and shelter from rain and cold, think evergreen trees such as western red cedar, western or mountain hemlock, Douglas-fir, or wax-myrtle. Allow seed heads to remain on perennials to provide food for birds (unless self-sowing poses a problem). Be sure to check plants’ needs before incorporating them into your yard or plan. And be sure to let fallen leaves stay on bare soil and downed wood stay put in order to protect the soil, supply cover for overwintering little creatures and food for ground-feeding birds.

_MG_2133 sRGBWhoever said that winter landscapes are drab and lifeless didn’t consider the possibilities. With a little ingenuity and planning, your garden can be a winter wonderland—in spite of short days.

Happy winter solstice!

© 2014 Eileen M. Stark

To leave a comment please click on the blog’s title

 

Reflecting on What Makes a Garden “Real”

_MG_1051

American gardens are generally a mix of styles borrowed from other countries and cultures, many of which developed over centuries. Just a few that we’ve adapted: The romantic English cottage garden, the traditional Japanese garden, and the formal French parterre. This borrowing isn’t unlike our diets—I eat mostly ethnic or ethnically influenced foods for a variety of reasons, most of which revolve around flavor, nutrition, and ingredients that are plant-based. Ethnic cuisine can be wonderful, especially when locally grown ingredients bring it all home.

But landscaping with borrowed styles and plants typically results in gardens that are decidedly unauthentic and typically do little to support life. What’s lacking is a relationship to local history, geology, ecology, and a sense of place (more on the latter in the book). When we use mainly local ingredients (that is, native plants and other elements), though, even exotic or ‘period’ designs can be ecologically functional and feel like home.

Creating gardens that are enmeshed in their native surroundings, use indigenous materials, and reflect the natural world, then, are real. They are beautiful, but not just for the sake of mere decoration, and unlike period gardens, they are designed to play a crucial role within the landscape. Their loveliness is functional, so that every species in the intricately webbed ecosystem has a good chance of being able to do what it’s supposed to do. Insects, for example, must be everywhere—to eat the foliage of plants that they share an evolutionary history with and subsequently provide for those higher on the food chain, to pollinate flowers, and to do countless other jobs.

The functional beauty that’s found in nature’s intimate connections can be in your yard, too. Even “average” backyards are host to amazing numbers of species, but when we add native plants, biodiversity skyrockets: Studies show that native species support 29 times the wildlife that exotic species do. Of course, some nonnative species do support some wildlife (in limited ways), so I don’t recommend removing all noninvasive exotics that currently support wild species or provide food for you, or furnish an emotional connection.

Whether you’re ready to create new beds, replace dead or dying plants, or make over your entire yard, choose plants that belong in your area. Instead of a maple from Asia, consider the lovely PNW native maples—vine maple (Acer circinatum), Douglas maple (Acer glabrum var. douglasii), and big-leaf maple (Acer macrophyllum). Thinking about new shrubs? Look for natives that look similar to ones you admire but come from a faraway place; for example, choose Western mock orange (Philadelphus lewisii) over P. coronarius or P. virginalis (my book has many other suggestions for native plants that resemble common, exotic garden plants). When adding ground cover, choose an assortment of native ground hugging plants that would be found together in nature. Essentially, choose plants that have evolved together and grow together in natural communities—known as “associated species.” If the conditions (light, soil, moisture) suit them, they are your best bet because they offer wildlife what they need, nurture each other, and increase the chance that they will thrive in your yard.

Finally, when purchasing native plants, buy those propagated from source material that originated as close as possible to your site. Using such “local genotypes”  helps ensure that you get plants that are well adapted to your area and preserves the genetic diversity that helps plants (and animals) adapt to changing conditions. Ask growers and nurseries about their sources if you’re unsure.

And although many cultivars—with a range of flower color, leaf attributes, size, etc.—have been developed, it’s best to choose true species or varieties found in nature. 

A garden’s propensity for diversity draws in both gardeners and visitors, generates appreciation and awe for natural processes, and furthers our collective ecological knowledge. In a hazelnut shell, “real” gardens stay true to the character, time, and culture of a place.

© 2014  Eileen M. Stark