Pacific Northwest Plant Profile: California hazelnut (Corylus cornuta var. californica)

Corylus cornuta var. california catkins

Flowers in January? You bet. Although they’re not showy blossoms that attract most people desperately searching for signs of spring, the flowers of California hazelnut are a truly welcome sight in mid-winter to spring. Hazelnuts are monoecious plants, having both soft-yellow male catkins that dangle off the tips of leafless branches, and tiny feathery clusters of red stigmas—decidedly female—that are few and often difficult to see. Due to their timing and structure, they are pollinated by wind, not insects.

California hazelnut is a deciduous, multi-stemmed woodland shrub (or small tree), beautifully textured with soft-green, saw-toothed, velvety leaves that adorn arching branches. In autumn it turns a glowing yellow or gold. Corylus cornuta var. california (leaves)Besides seasonal aesthetic interest, it offers hard-shelled edible nuts, which typically mature in late summer to early fall.

A member of the birch family, California hazelnut’s botanical name originates from both Greek and Latin. The genus name, Corylus, comes from the Greek korulos, which means “helmet” and refers to the nearly impenetrable husk on the top of the nut. The epithet, cornuta, means “horned” in Latin and refers to a beaklike point formed by the bracts, or husk, that enclose the developing fruit.

Corylus cornuta var. californica

How it grows
California hazelnut typically can be found on moist, rocky slopes or riparian areas in the understory or at the edge of mixed forests at low to mid-elevations. The variety californica naturally occurs in southern B.C., within most counties of Washington and Oregon west of the Cascades (as well as Wallowa County in NE Oregon), and in northern to central California. Another variety,  Corylus cornuta var. cornuta, commonly known as beaked hazelnut, makes its home east of the Cascades and throughout a large portion of the U.S. According to the US Forest Service, although California hazelnut doesn’t naturally grow with other native hazelnut species, “hybridization is possible in the Willamette Valley of Oregon and other locations where it grows adjacent to European filbert (cultivars of C. avellana) orchards.” Corylus americana (American hazelnut) grows in the central and eastern U.S.

Wildlife value
Many wild species eat and disperse the nuts. Rabbits and deer eat leaves and sprouts. Cover is provided for many species of birds, as well as mammals.

Try it at home
California hazelnut doesCorylus cornuta var. california hazelnut well in sun to shade, and prefers moist but well-drained, somewhat acidic soil with a good amount of organic matter. While tolerant of clay soils, it doesn’t do well on poorly drained sites. Useful for erosion control on slopes, it will eventually form a thicket. Suckers may be removed in winter (during dormancy) to create more of a treelike form, but the habitat created by thickets favors many wild animals, especially birds seeking cover, so consider just leaving this shrub to its natural form.

Mature size varies from 10 feet to 20 feet tall, possibly more with advanced age. Spread is typically 10 to 20 feet, but usually on the lower end in garden situations. Since chipmunks, jays and squirrels love the nuts, I suggest you grow as many of these charming shrubs as possible (especially if you want to have the chance to taste them yourself!). Growing more than one shrub also increases pollination, which leads to more nuts per plant. Space them 10 to 20 feet apart (on the low end if you want some density). Though this shrub is quite drought tolerant when established (2 to 5 years), water it deeply but infrequently in the hot summer months thereafter, especially if your site receives a lot of sun or reflected heat.

Squirrel watchingTo grow this plant from seed, collect nuts in late summer or early fall while the husks are still a bit green. To make sure they’re viable, place them in a bowl of water for 15 minutes or so, and use only those that sink. Plant them outdoors, an inch or two deep (but make sure a little squirrel isn’t watching you do it!). Mature plants can also be ground layered or propagated by semi-hardwood cuttings in the fall, or suckers may be divided in early spring.

California hazelnut is a good substitute for European hazelnut or English hawthorn.

Grab a partner
Because California hazelnut grows in a variety of plant communities, it gets along well with many other species. Choose partners that would have likely grown in your area. In the Douglas-fir/western hemlock ecoregion, consider red alder (Alnus rubra), vine maple (Acer circinatum), salal (Gaultheria shallon), thimbleberry (Rubus parviflorus), sword fern (Polystichum munitum), deer fern (Blechnum spicant), and woodland strawberry (Frageria virginiana or F. vesca), among others. In the grassland and oak woodland areas of the Willamette Valley, Puget Trough, and Georgia Basin, grow it with Oregon white oak (Quercus garryana), Oregon ash (Fraxinus latifolia), cascara (Rhamnus purshiana), red-twig dogwood (Cornus sericea), inside-out flower (Vancounveria hexandra) and others. In the southern Coast Range and mountainous areas of southwest Oregon, include tanoak (Lithocarpus densiflorus), madrone (Arbutus menziesii), and serviceberry (Amelanchier alnifolia).

As always, buy plants propagated from source material that originated as close as possible to your site. Using such “local genotypes”  helps ensure that you get plants that are well adapted to your area and preserves the genetic diversity that helps plants (and animals) adapt to changing conditions. Ask growers and nurseries about their sources if you’re unsure.

© 2017 Eileen M. Stark

To leave a comment, click on post’s title

Reimagining the Ecological Value of Cities for Dwindling Pollinators

Bombus vosnesenskii

A recent literature review on the ecology of urban areas published in Conservation Biology offers irrefutable evidence that cities can and ought to be havens for wildlife, specifically pollinators. In “The City as a Refuge for Insect Pollinators,” the authors, a group of multidisciplinary scientists from around the world, recommend that urban areas—particularly fast growing ones—be managed to support biodiversity.

Habitat loss, degradation and fragmentation, industrial farming, wildlife diseases, and widespread use of toxic pesticides have wiped out and continue to wipe out many insect pollinator species. Along with other invertebrates, we really don’t know how many are disappearing from the earth forever, although new studies show horrifying losses. Since urban sprawl is a major reason for the shocking loss of biodiversity, it’s surprising that historically, the consensus—even among conservationists—has been that cities can’t or don’t need to support wildlife. But many years of research on wild bees in urban areas proves that cities can or still do supply habitat for both pollinator abundance and diversity, and “in several cases, more diverse and abundant populations of native bees live in cities than in nearby rural landscapes.”

While we certainly need to also restore and protect rural and suburban lands, there’s a growing realization that “pollinators put high-priority and high-impact urban conservation within reach,” writes the team. “The relatively small spatial and temporal scales of insect pollinators in terms of functional ecology (habitat range, lifecycle, nesting behavior compared with larger mammals for example) offer opportunities for small actions to yield large benefits for pollinator health.” Small actions: they’re talking about you and me, as well as city planners. As the authors note, many residents understand the urgency and necessity, and are willing to help. Turning our yards into “real” Cedar waxwing in red-flowering currantgardens, complete with native plantings and other elements that support entire life cycles of local biodiversity, ought to be paramount. Priceless benefits to us (crop pollination and a chance to admire nature’s beauty), to countless other species that rely on plants or insects for food, and to plants (pollination), come with the package.

Urban conservation often aims to connect people to nature. This is, of course, a good thing, since nature education is extremely important—it’s been said many times that the more we learn about wildlife and natural processes, the more we will want to protect it. But if more effort was spent on wildlife itself and providing what it needs (large, undisturbed, interconnected areas of native flora), no doubt many species would be much better off. I always feel a need to apologize to startled birds and little mammals I encounter on walks in natural areas around the city. There’s a reason wildlife refuges often close off sections to pedestrians: many species are hypersensitive to human presence; they see us as predators and the stress harms them. It would be immensely beneficial if parts of urban areas were also simply left to the wild ones.

I can’t agree more with the authors. If we want to recover and protect pollinators and other wildlife globally, we need to tend to their needs locally. It will take policy makers, planners, and environmental managers, but also each of us, whether we work individually or engage with community organizers.

 

© 2016 Eileen M. Stark

To leave a comment, click on post’s title

Manage Stormwater at Home for Clean Rivers and Habitat

rainwater mitigation with trees

It’s another one of those exceptionally rainy days (with more to follow) and I don’t want to do laundry or even take a bath. Why? A few days ago the city’s sewers overflowed into the river, and I’d rather not add more water to an already overtaxed system that results in raw sewage killing and polluting the habitat of wild species downstream. It’s not just the abundance of rain that’s the problem: It’s our infrastructure.

Generally, the unaltered earth is perfectly capable of soaking up or directing the moisture that nature doles out to natural waterways or floodplains, and seasonal flooding is normal and natural. But our urban and suburban environments, with their ubiquitous, impermeable roads, walkways, roofs, and parking lots—as well as shortage of erosion-controlling plants—cause runoff that carries soil and toxic pollutants like oil, fertilizers, and pesticides during heavy rains. In older parts of cities, pipes and tunnels that take away domestic and industrial waste combine with water collected from surface runoff. Under normal (not too wet) circumstances, the sewage and runoff is diverted to sewage treatment plants. But when too much storm water or snowmelt can’t soak in, it overwhelms the system, creating combined sewage overflows (CSOs) that cause raw sewage and other pollutants to spill into rivers, lakes, or coastal waters. People may be told not to have contact with the water, but wildlife has no choice and suffers silently. Eventually, polluted sediment builds up in waterways, increasing water temperature and turbidity and lowering oxygen levels, resulting in deaths.

In Portland, where I live, the city is investing in stormwater management projects that (sort of) mimic nature, in an attempt to mitigate stormwater at its sources. There is a plethora of work going on and CSOs are reportedly decreasing in frequency, but even one is too many.

How to help keep water clean

We can help manage and reduce stormwater pollution and overflows, starting at home. Here are some tips; some will have immediate effect, while others will take some time and effort:

Protect existing conifer trees and plant new ones (preferably native species that historically grew in your area). A mature evergreen tree can intercept more than 4,000 gallons of rainwater each permeable hardscapeyear, quite a bit more than deciduous trees. They also provide habitat, beauty, shade and cooling and help stabilize soil. Don’t prune out lower limbs unless it’s absolutely necessary.

Renovate or construct new walkways, driveways, and patios with permeable paving, rather than concrete or asphalt.

Disconnect your home’s downspouts when feasible and install rain gardens or swales in landscaped areas. They help prevent flooding by allowing water that falls on your roof to slowly infiltrate into the ground, lessening the burden on sewer systems when it is most important. Simply disconnecting spouts and allowing water to run down a driveway or walkway and into the street defeats the purpose. Additional rain garden guides: here and here.

swale from disconnected downspout Use only organic fertilizers when necessary (excess can be washed into waterways), and don’t use pesticides.

Grow native plants that help control erosion. Some examples (that naturally occur in many parts of the Pacific Northwest) include vine maple (Acer circinatum), madrone (Arbutus menzeisii), Oregon white oak (Quercus garryana), oceanspray (Holodiscus discolor), serviceberry (Amelanchier alnifolia), salal (Gaultheria shallon), nootka rose (Rosa nutkana), sword fern (Polystichum  munitum), kinnikinnick (Arctostaphylos uva-ursi), and inside-out flower (Vancouveria hexandra). Choose plants that will fit your light, soil, and moisture conditions.

 Employ rain barrels to collect rainwater runoff from building roofs for irrigation during dry weather (if you can’t disconnect a downspout).

Conserve water simply by taking very short showers, never letting the faucet run unnecessarily, and fixing any leaks (just as you would during droughts!).

Collect “graywater” and use it onsite to reduce sewage discharges year round. Beware: this takes some ingenuity and planning!

 Never dispose of chemicals (like anti-freeze) by pouring it on the ground or into storm drains. Even drops of oil that seem relatively contained in your driveway can easily be swept into local waterways by rain. If you get an automotive oil leak, catch the oil in a pan and get it fixed ASAP.


© 2015 Eileen M. Stark

To leave a comment, click on post’s title

 

 

 

What Makes Leaves Change Color?

Populus tremuloides (quaking aspen)

I’ve written quite a bit about the importance of leaf “litter” on the ground, so here’s a little info on how it gets there and what conditions make for the most vibrant leaves. While it’s understandable to think that it is the cooler temperatures of the fall season that bring about color change, there are several other factors. Besides temperature, sunlight and soil moisture influence the quality of autumn leaf color. But the process that instigates the show is actually more of a chemical process brought on by less daylight.

Darkness rules

Most plants are quite sensitive to each day’s length of darkness. In early fall, when nights begin to lengthen, the cells near the joint of the leaf and stem in deciduous trees and shrubs are triggered to divide quickly. This corky layer of cells (the abscission zone) begin to block transport of essentials such as carbohydrates from the leaf to the branch, as well as the flow of minerals from roots upward to leaves.

When plants are actively growing, green chlorophyll is constantly produced in the leaves. But in autumn, when the connection between the leaf and the rest of the plant gets more and more obstructed, chlorophyll replacement slows and then stops completely. This is when autumn colors are revealed: Normally masked by chlorophyll, yellow pigments called xanthophylls and orange pigments known as carotenoids become visible when chlorophyll shuts down. Red and purple pigments come from anthocyanins which are created (in some species) from sugars within the leaf and it’s speculated that they are a defense mechanism that helps some plants fight herbivores like aphids.

Spiraea betulifolia var. lucidaAs fall moves forward, the cells in the abscission layer become drier and weaker and leaves eventually part company with the plant. Many trees and shrubs lose their leaves when they are still colorful (making for some gorgeous mulch!), while some retain the majority of their foliage through much of winter, though their leaves lose color fairly quickly. Like chlorophyll, the other pigments eventually break down in light or when frozen. The final pigments are tannins, which look brown. An example is the Oregon white oak (or Garry oak), which appears golden for just a few days before turning brown.

Recipe for color

Low temps (but above freezing) and ample sunlight following formation of the abscission layer cause quick destruction of chlorophyll and promote the formation of bright colors in some species. Stress from drought during the growing season can sometimes trigger early formation of the abscission layer, resulting in leaf drop before they have a chance to develop fall coloration, so a growing season with ample moisture that is followed by somewhat dry, warm, sunny, calm fall days with cool, frost-free nights provides the best recipe for bright fall colors.

Plant natives!

Besides offering the most ecological benefits, some native species grown in their native ground offer wonderful fall color that rivals that of nonnative plants. Here in the Pacific Northwest, some of the most vibrantly colored leaves occur on natives such as paper birch, black hawthorn, Oregon ash, quaking aspen (pictured, top), golden currant, vine maple, serviceberry, and red-twig dogwood. Enjoy!

 

© 2015 Eileen M. Stark

To leave a comment, click on post’s title

Autumn Leaves Benefit Your Garden in Countless Ways

 

leaves

 

Leaves offer great benefits to wildlife and your garden’s soil. Don’t throw them away!

In another post I extol the virtues of letting leaves do their thing. By that I mean allowing them to do what nature intended: Protect and enrich the soil, offer food for ground-feeding birds, provide a nursery for butterfly larvae/pupae and cover for overwintering queen bumblebees and other beneficial insects and microbes, afford animals like frogs and salamanders places to hunt and Varied thrush foraginghide, and myriad other ingenious things. Leaf litter breaks down with the help of mycorrhizal fungi that move carbon into soil, extract nutrients for plants and protect them from disease, lessen soil erosion, and play a very important role in storing the gigantic pool of carbon within soil.

I’m not sure how leaves got such a bad reputation—I constantly see and hear people blowing them and raking them not only from hardscape and lawn (which is understandable), but also from bare soil. I’m not sure what the aversion is, unless it’s another kind of “biophobia,” in this case a fear of organic materials. Another no-no is putting leaves in the trash, which ends up in landfills. The US EPA says that nationwide, 13 percent, or 33 million tons of municipal solid waste is from leaves and grass and tree/shrub trimmings. Here in Portland, as well as some other cities, there is curbside pickup for green waste for those who don’t compost, and the city picks up leaves from the streets of leafy neighborhoods every autumn to make leaf compost that residents can purchase for a modest fee. But using them in your yard is even better!

How to do it: For areas like driveways, walks, sewer grates and drainage pathways, rake them up (but please don’t use noisy, polluting leaf blowers), and use them as follows:

Mulch your beds.Take raked leaves from hardscape and lawn and place them in your planted beds, a couple of inches thick to protect the soil and provide insulation from the cold (if you live in a very cold climate, add more). Keep them off of tree and shrub trunks and perennial crowns to prevent rot. Try to do your raking on a non-windy day and consider moistening them after you apply them if it’s a dry day. Don’t shred leaves before applying—it won’t help the wildlife described above.

If you must have lawn, leave small amounts of leaves on it and mulch them in situ. Use your mower to shred leaves on grass to improve lawn health by naturally fertilizing the soil. Freshly fallen leaves are high in minerals, and don’t kill soil organisms like synthetic fertilizers do.

Make leaf compost. Collect leaves to compost separately to make leaf compost (also known as leaf mold), a great soil conditioner. If you have a lot of space, simply round them up into piles and let nature break them down with fungus and microscopic creatures. Shredding large leaves will speed up the process. If space is lacking or you want more control, create round chicken wire enclosures and fill them with leaves. You can also dig large depressions and fill them with Homemade compostleaves. Keep piles moist (but not completely saturated) and add more leaves as they sink down. During excessively rainy periods, consider covering the pile. In a year or more (depending on the type of leaves used), after the leaves have broken down, you will have some very dark, crumbly humus to add to your veggie beds and other places that need high quality soil.

Add leaves to your mixed compost bins, heaps, or cages. In your mixed compost bin, add collected leaves—which are mostly carbon—to help balance the “greens” (compost should be roughly half “greens” and half “browns”). Consider storing extra leaves and adding them to your compost bin throughout future months.

Save some for spring. If you have a large amount of leaves, put some aside—or just take some from your leaf compost heap—to use as mulch next year. Mulch applied in spring, after the soil warms, helps maintain soil moisture and protects the soil from oxidation. Be sure to leave some soil bare though, because the majority of native bees nest in the ground and cannot get through thick layers of mulch.

One word of caution: Leaf compost generally makes the soil slightly more acidic. This won’t be a problem for most Pacific Northwest native species, which evolved in slightly acidic soil. But when using leaf compost in vegetable beds, test your soil’s pH—it may need a bit of lime to keep the soil neutral or slightly alkaline, which many cultivated vegetable plants need.

© 2015 Eileen M. Stark

To leave a comment, click on post’s title

New Study: Non-native Plants Reduce Insect Diversity

Acer circinatum (vine maple)

Natives like vine maple (Acer circinatum), surpass nonnatives for restoring biodiversity


As if we need further proof
, a new study published recently in Ecology Letters demonstrates that native plants are much better at supporting local insects than nonnative species, and that nonnative plants are exacerbating biodiversity loss with their inability to support many insect herbivores.

The researchers planted test gardens with both native and nonnative tree species and collected data over a three-year period. They measured the insect herbivore species and communities that were using the plants, and compared native trees to nonnative trees of two types: Those with close native relatives in the region and those that had no close native relatives.

They found that nonnative trees with a native relative (in the PNW, think nonnative scarlet oak, which is related to the native Garry oak) host and support fewer species of insects than the native counterpart, and that few of them were unique to that species of tree. The result was even more striking with nonnative trees that had no native relative in the region (such as golden chain tree, a European species).

The study also found that young insects, which are most supportive of an ecosystem, were found on the native trees. Adult insects, on the other hand, may be found on plants, but for various reasons—to rest, to warm themselves, breed, etc.

Essentially, when the diversity of insect herbivores—which are the basis of the food web—plummet, so too do all the species that rely on them for food. If you’re not particularly fond of insects, think of them as baby food: In spring and early summer, when insect eggs are hatching and larvae are feeding, most birds are wholly dependent on insects to feed to their young, as well as to keep their own strength up. And most other wild species rely on insect herbivores in one way or another. Even predators like bobcats need native plants, since they feed on wildlife that need insects and/or native plants to survive. 

So, this is more evidence that natives are the answer for restoring biodiversity, while most nonnatives are problematic. When selecting plant material—even in an urban area—choose plants that help the environment and its community members. Go for the native oaks, pines, maples, willows, etc., with their plethora of insects. There’s almost always a native option!

 

© 2015 Eileen M. Stark

To leave a comment click on post’s title

 

Leaving Room for Wild Ones

It’s about as beautiful a fall day in Portland as you can get. I’d love to be hiking, bird watching, or sowing seeds for future plants, but it won’t be long before the book will be released. What on earth inspired me to write a book? Limelight? Prestige? Rolls of royalties? Ha!    IMG_3164 sRGB copy

What motivated me was the earth, or more precisely, my love of it. Edward O. Wilson, the eminent evolutionary biologist and the authority on ants (and my hero), coined the term “biophilia” for our innate affinity for the rest of living organisms. Besides having a bad case of it, I am unabashedly horrified at the extent to which the natural world has been plowed under by our unrelenting reorganization of nature to suit our tastes.

Urban/suburban sprawl, invasive plants, toxins, climate change, and Big Ag (by far the biggest waste of land is the 41 percent of the lower 48 states given to livestock ranchers) all contribute to our precarious environmental condition. Many remnant natural areas are isolated, degraded ecosystem fragments that struggle to support continually decreasing levels of biodiversity. We are the only species that has such an uncanny knack for completely destroying habitat that is essential for other species to live—we take and take, without giving back. But we humanimals are a flexible lot, compared to most species known as specialists that live in narrow habitatNative forest, Vancouver Islands and often have precise dietary needs. When environmental conditions change, generalists like us are usually able to adapt (at least so far), but specialists often become victims who silently go extinct: They can’t simply move on, quickly change their diet, or “reinvent” themselves.

Humans have the ability to conserve, restore, and give back to the earth some of what we’ve taken. I’m heartened by some thrilling restoration and preservation work going on that interlocks and connects broken landscapes—unbroken corridors are essential for wildlife caught in our anthropocentric time.

Aptly named, regional conservation partnerships — coalitions of small land trusts and the like — work to preserve and protect mosaics of public as well as private land (by buying up parcels or securing easements, basically paying landowners to protect the present and future) and connecting them by wild corridors. The Wildlands Network is one such organization that is working on four “wildways” in North America; the Pacific Wildway is closest to home, running from Alaska to Baja.

It is these gigantic projects that make the biggest splash ecologically. But small, conventionally landscaped areas are often stagnant ecosystems that add to our overall environmental debt. So my mission is to make it easier for people in the Pacific Northwest to turn their traditional yards into spaces that benefit dwindling biodiversity, to help people garden with nature in mind. Many books tell us why we need to move away from “typical” landscapes that are dominated by nonnative ornamental plants and lawn composed of exotic grasses—both of which offer few ecological benefits. But few tell how to do it, and in our region (from southern B.C. to southern Oregon, west of the Cascades).

Ecologically functional gardening is some of the best conservation work you can do. Supporting environmental groups and campaigns is wonderful, but with this you know exactly where your money goes. You can do a little or a lot. And with some patience and a bit of honest labor, the benefits will gradually be observable right outside your window. I invite you to join me on the front line (or in your back yard or side yard, or even parking strip!) to help sustain native fauna and flora, the backbone of ecosystems.

© 2014 Eileen M. Stark

To leave a comment, please click on the blog’s title