A Glimpse of an Owl


“There’s something large in the birdbath,” announced my husband as he peered out the dining room window late one recent afternoon. Looking through a kitchen window, I caught a glimpse of what appeared to be a stocky, furry creature with no neck, but could only recognize that it was definitely not a hawk. “It’s an owl!” Rick shouted, already on his way to the basement where we keep the camera. By that time I’d grabbed my binoculars, conveniently hung by the window for these moments, and focused on a bright-eyed Western Screech-Owl (Megascops kennicottii), likely a juvenile (judging by the fluffy/messy feathers the color of tree trunks). We’d heard these owls, on and off, in past years — especially on warm evenings — but had never seen one. And that’s the way they wanted it.

Western Screech-Owls hunt at dusk, night, and dawn, and are much more often heard than seen. Their high pitched hoots — that accelerate with the rhythm of a bouncing ping pong ball — fill the night air like nothing else. (Contrary to their common name, they don’t “screech” but may “bark” when frightened.) Prior to the loss of an enormous American elm tree in front of our house, their voices sometimes drifted through the bedroom window on summer nights. Last night we heard one again, albeit a little more distantly. Perhaps it was this little owl.

Diverse habitats
Found throughout most of western North America from southeastern Alaska and western Canada southward to western Texas, Mexico and part of Central America, their habitat is varied and includes coastal forests, riparian areas, scrublands and deserts. In the Pacific Northwest they can be found in wooded and forested habitat under 6,000 feet — especially with deciduous trees — but may also be found in parks, suburbs, and other residential areas. They weigh 5 to 9 ounces and grow to 7 to 10 inches in length, with a 20 to 22-inch wingspan. Color morphs include the gray Pacific, brown Pacific and Mojave. In general, they are grayish or brownish with heavily streaked feathers. With large yellow eyes, pointy little ear tufts, a yellow bill and a round body and head, they are — in my opinion — adorable.

Food, nests and babies
Their days are spent either in a roosting cavity or perched at its entrance, camouflaged, no doubt planning nighttime hunting adventures which involve locating prey by sight as well as sound. Their generalist diet varies with the habitat; they eat mostly small mammals such as mice, rats, and bats, and large night-flying insects as well as spiders, but may also take some small reptiles, birds, fish, mollusks, and amphibians. I read somewhere that they occasionally take prey bigger than their own bodies!

Like other secondary-cavity nesting birds, Western Screech-Owls roost and nest in natural cavities, such as those excavated by woodpeckers or those formed by branch breakage; in some regions they may nest in cliffs or cactus. They also might use nest boxes if properly placed and dimensions are adequate, but Eastern Screech-Owls are reportedly more likely to use them than Western. During courtship, a pair will often sing duets and the male presents food to the female. Being “socially monogamous,” the pairs raise their young together. Observational studies reveal that pairs show affection, often perching closely and preening one another. The male locates a usable cavity and presents it to the female, sometimes with a tasty morsel in his beak. Throughout the breeding season, the male will roost near the nest cavity; when not roosting, his job is to supply all the food for the female while she incubates the eggs (for around 26 days) and cares for the young. Both the female and the male take turns guarding the entrance of the cavity from predators. After the young have most of their feathers, the female helps with hunting. When the nestlings no longer need her constant attention, she will roost nearby, often touching the male. After the month-old young leave the nest, they continue to be cared for by their parents for another five to six weeks.

Conservation
Although Western Screech-Owl population trends are difficult to study because of their nocturnal habits, populations reportedly have declined slightly between 1966 and 2019, according to the North American Breeding Bird SurveyPartners in Flight estimates the global breeding population at 180,000 and rates them 13 out of 20 on the Continental Concern Score, a relatively low conservation concern. However, the Pacific Northwest population of Western Screech-Owls are highly vulnerable to development (especially in riparian areas), forest clearcutting and other logging, noise pollution while nesting, rodenticides, and vehicular and power line collisionsTheir requirement for snags (standing dead trees) for nest sites have also had a negative impact on their numbers. And according to Audubon, climate vulnerability in the Northwest is fairly high (especially in the Puget Lowlands and Willamette Valley) due to “wildfires that incinerate habitat” and “spring heat waves that endanger young birds in the nest.” The Nature Conservancy of Canada states that Western Screech-Owls “are assessed as threatened by the Committee on the Status of Endangered Wildlife in Canada,” with their small populations threatened by the loss of mature trees that provide cavities for nesting. Although these owls can adapt to degraded habitat and human presence to some extent, maintaining strong populations will require vigorous protection of open forested areas near water in both rural and residential areas.

I wrote about Western Screech-Owls in my book many years ago: “A mated pair of Western screech-owls once graced my neighborhood, but they left forever when a mature tree they used was drastically hacked back during breeding season, a time when birds are intensely sensitive to disruption. I still think of them and how they softly called to each other in the impending dusk, and wonder if they were able to find a more peaceful place to nest. Their eviction symbolizes what can happen when human ignorance and thoughtlessness intervene. Indeed, recognizing that every front, back and side yard—even those within urban areas—is a part of an intricate ecosystem … is the first step toward encouraging rich, natural diversity.” Let’s hope this little owl has a long, rich life.


© 2024 Eileen M. Stark

Study Confirms Neonic’s Deadly Harm to Birds as EPA Ignores Facts


The American Bird Conservancy (ABC) recently released an updated, piercing report that confirms the continual decline of wild birds — as well as beneficial insects and many other animals — due to the uncontrolled use of highly toxic neonicotinoid pesticides. It’s a lengthy read, so I thought I’d offer a fairly brief synopsis to those who appreciate and support biodiversity.

Back in 2013, the ABC produced its ground-breaking paper, “The Impact of the Nation’s Most Widely Used Insecticides on Birds” (Mineau and Palmer 2013), which warned of the catastrophic risks that these ambulant and persistent insecticides create for both terrestrial and aquatic ecosystems, as well as the likely repercussions on wildlife who depend on those ecosystems.

Fast forward ten years, and “Neonicotinoid insecticides: Failing to come to grips with a predictable environmental disaster” (Mineau and Kern 2023) reveals that little has changed, except that the quantity used is hidden from us. The report examines the recent science that echos earlier alarm calls and describes the completely inadequate regulatory response by the EPA and other regulators. According to Hardy Kern, one of the study’s authors, “Some states and agencies have taken minimal actions, but we have a long way to go before these chemicals are no longer a threat to birds, native pollinators and aquatic systems.” A recent comprehensive study in Europe found pesticide and fertilizer use to be “more dramatic than forest alterations, urbanization, and climate change”.

Developed by Bayer and Shell and introduced in the early 1990s, neonicotinoids (“neonics”) have been touted as safe and more benign than any previous pesticide groups. They quickly became popular in pesticide markets worldwide and today they are the most commonly used insecticides (where they haven’t been banned). The neonics group is a synthetic neurotoxin chemically similar to nicotine and includes acetamiprid, thiacloprid, thiamethoxam, clothianidin, imidacloprid and others. They are widely used in agriculture (more than 140 types of crops, including rice, wheat, corn, sunflowers, cotton, nuts, soybeans, fruits and vegetables), in commercial nurseries, and in urban areas on golf courses, parks, gardens and lawns, in insect sprays, and flea and tick veterinary products. (Last month, in response to a Center for Biological Diversity legal petition asking that Seresto flea collars — which have been linked to more than 100,000 reports of harm or death — be pulled from the market, the EPA responded by only requiring that warning labels be placed on the collars.)

Neonics are applied as a soil injection (“soil drenching”) and tree injection, as a foliar spray, and as a seed coating (the most common application). As a plant grows, the systemic pesticide permeates all cells within roots, stems, leaves, pollen, nectar, sap, fruit, and honeydew. In addition to killing what are considered pest insects, neonics indiscriminately poison non-target beneficial species like bees, butterflies and other pollinators, including hummingbirds. An estimated 96 percent of land birds are insectivorous and must feed their young insects (which may be poisoned), and seed-eating birds commonly consume spilled seeds loaded with neonic residue. They can also encounter neonics by inhalation of vapors, skin contact, and in their drinking water. Dust generated from pneumatic seed planting machinery can also kill flying insects directly, and it can disperse off-site at seeding time (making additional plants acutely toxic), and contaminate soil. In the soil, neonics persist for months to years, with drift, irrigation or runoff carrying them long distances, eventually contaminating new soil, plant life and water supplies. Only two to five percent of most seeds coated with neonics make it into a target plant, leaving roughly 95 percent in the soil, where it can contaminate the nests of native ground-nesting bees (70 percent of native bees nest in the ground).

When consumed in lethal doses, neonics permanently bind to nerve cells, which typically causes uncontrollable twitching and shaking followed by paralysis and eventually death. But even small, nonlethal doses can cause severe debilitation to victims’ immune, reproductive, navigation, and nervous systems. Birds may become so incapacitated that they don’t eat, migrate, reproduce, and become paralyzed or experience seizures. Researchers have found destructive reproductive effects at concentrations much lower than the thresholds set by regulators: The ABC found that ingesting just one-tenth of a contaminated corn kernel (with any of the neonics) per day during egg-laying season can negatively affect bird reproduction. Appallingly, “A single corn kernel coated with a neonicotinoid can kill a songbird. Even a tiny grain of wheat or canola treated with the oldest neonicotinoid, imidacloprid, can poison a bird.” The ABC authors expressed, “Based on recent studies, we have increasing concerns over reproductive and sub-lethal effects resulting from low exposures in farm fields … Given that exposure is often season-long, this raises the specter of significant effects on a large number of bird species.”

Due to widespread use, neonics have caused and continue to cause extensive ecosystem contamination, including watersheds, groundwater, and irrigation water. Neonics’ water solubility means that they travel easily in surface runoff, contaminating aquifers and other aquatic environments—residues have even been found in seabirds’ feathers and raptors, and there is proof that they kill fish and other aquatic animals. A U.S. Geological Survey study found that neonics polluted more than half of the streams in the U.S. In addition, bats are directly and indirectly harmed, and birth defects have been found in white-tailed deer. If you’re wondering about harm to humans, the NRDC’s “Potential Risks to Brain and Sperm” article details the health impacts, including the possibility of creating even more toxic compounds when neonics are mixed with things like chlorine at water treatment plants. The good news is that organically-grown foods are mostly neonic-free.

Unwillingness of regulators
Regulation of these chemicals is extremely inadequate. The ABC authors say, “The U.S. is far behind the European Union and a few Canadian provinces in responsible regulation and mitigation. The main uses of neonicotinoid insecticides go against fundamental principles of integrated pest management. Alternatives to these chemicals do exist … We believe they have failed in the execution of their mandate and in preventing the ongoing environmental tragedy that neonics represent.”

Possibly the worst debacle of regulators is that seeds coated with neonics are not regulated at all; they’re included in the “Treated Item Exemption” of the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA), which, according to the ABC authors, means that most neonic applications are not counted in usage estimates. In 2017 a number of NGOs petitioned the EPA to remove seed treatments from the exemption. It took the EPA, which ignores the advice of its own scientists, five years to deny it. Earlier this summer the groups sued the EPA.

The U.S. government has also lessened the amount of data available about pesticide use and proliferation to scientists and the public. Earlier this year the U.S. Geological Survey cut the amount of data it collects in its National Pesticide Use Map, and beginning in 2024 its report will be released only every five years, instead of yearly. It’s also shrunken the number of pesticides it monitors from 400 to 72, partly because the USGS purchases data from a private company, which stopped including seed treatments in usage stats around 2015. The USGS says that “seed coatings are too difficult to reliably source information on and, therefore, are not included in national pesticide-use estimates.” They’re also left out of National Water Quality Assessment maps.

So, no one knows how much neonics are used on seeds. A USGS graph of clothianidin usage in the 2023 ABC report shows that over 3.5 million pounds were used in 2014 (mostly on corn), and in 2015 the usage was slightly more than 500,000 pounds. Of course this doesn’t mean that less clothianidin was used; only that seed treatments were dropped from estimated use.

A 2019 study found that U.S. agriculture is nearly 50 times more toxic to insects than it was 25 years earlier and neonics are responsible for a whopping 92 percent of that atrocity—this is especially heinous considering the “insect apocalypse” that experts predict. Despite their rampant use, neonics can actually make pest problems worse because not only do they kill beneficial wildlife; they also kill soil microbes that improve plants’ health, durability, and crop yields. And, there is even evidence that neonics reduce crop production. In the U.S., there is no law that requires manufacturers prove that their product works. Speaking with National Geographic, Kendra Klein, study co-author and senior staff scientist at Friends of the Earth U.S., said, “We have four decades of research and evidence that agroecological farming methods can grow our food without decimating pollinators.”

Are neonics the new “Silent Spring”?
North America lost more than three billion birds (even species once considered common) between 1970 and 2018 — 29% of 1970 abundance — due in part to the ubiquitous use of neonics. Even the EPA confirmed that the use of imidicloprid, clothianidin, and thiamethoxam) harm roughly 75 percent of all endangered plants and animals. According to the Center for Biological Diversity, there’s been horrendous harm to imperiled species by all three insecticides, such as “all 39 species of endangered amphibians, including the California red-legged frog, as well as rusty patched bumblebees, whooping cranes, chinook salmon, northern long-eared bats and orcas.” The American bumblebee, once the most commonly observed bumblebee species in the U.S., has declined by an estimated 89 percent in just the past 20 years. Clearly, neonicotinoids are one of the most dangerous, toxic classes of pesticides that pose atrocious longterm threats to biodiversity. We’re in the midst of a harrowing extinction crisis with beneficial insects, birds, aquatic life, and mammals dying off in appalling numbers and neonics are a major, reckless threat that the earth does not need. “Neonics may not bioaccumulate in organisms and biomagnify in food webs as did DDT and other organochlorine pesticides of old, but they appear to be as widely distributed in the broader terrestrial and aquatic environments,” according to the ABC report’s authors.

Neonics are mostly banned in the EU (even “emergency” uses have been overturned in court) and parts of Canada (Ontario and Quebec require a prescription to use neonics to coat seeds, which has drastically reduced their use). Although a few states in the U.S. have passed legislation that drastically restricts the use of neonics (but doesn’t eliminate them), and other states are beginning to take action — such as Washington’s ban on residential use — only severe restrictions by the EPA will protect ecosystems, biodiversity and human health from these noxious, unnecessary chemicals before it’s too late.

In July of this year, Oregon’s Senator Jeff Merkley introduced the Pollinator-Friendly Plant Labeling Act, which would require the Department of Agriculture to create a certification program for plant producers to certify that their plants are not treated with pesticides or substance not approved for use in organically-grown products that are harmful to pollinators. Producers who choose to participate in the program would be able to use a “USDA pollinator-friendly” label on their plants and products. It’s a minor action, but is a step in the right direction.

In the home garden
The Northwest Center for Alternatives to Pesticides states, “Neonicotinoids are found in hundreds of products sold over the counter under various trade names. Many of these are designed for individual home and garden use. One of the most toxic neonicotinoids to our native bees — imidacloprid — is commonly applied to gardens, flowerbeds, shrubs, and trees in urban and residential areas.” According to the Xerces Society, “even when used according to printed instructions, garden products containing neonicotinoids can be applied to plants in concentrations dozens of times greater than on farm crops [sometimes at concentrations of as much as 120 times]. This means that bees can be exposed to lethal doses of neonicotinoids in gardens. Even if bees are not killed outright, smaller (non-lethal) doses can impact their health.” Remember that labels do not indicate that they are harmful to pollinators, so it’s important to either not buy such products or be sure to read ingredient lists (Imidacloprid, dinotefuran, clothianidin, and thiamethoxam are all neonics found in garden products). This Xerces Society brochure explains how to protect pollinators from neonics.

What you can do:

  • Buy organically-grown foods, seeds, bird-friendly coffee, and other products whenever possible (they’re not always much more expensive). If feasible, grow some organic produce at home. Find a list organic seed companies here.
  • Shop at plant nurseries that don’t use neonics (always ask if you’re unsure).
  • Don’t buy/use products that contain neonics (be sure to read labels).
  • Create pesticide-free, safe outdoor spaces using regional native plants that will encourage wildlife such as native bees, butterflies, birds, and other beneficials.
  • Ask your state and federal legislators to advance laws that eliminate (or at least severely restrict) pesticide use.
  • Email the EPA to voice your concerns about the lack of regulations on pesticide-coated seeds: pesticidequestions@epa.gov
  • Watch Beyond Pesticides’ short video for more info on toxic seeds and check out ABC’s fact sheet.

© 2023 Eileen M. Stark

Pacific Northwest Native Plant Profile: Red huckleberry (Vaccinium parvifolium)


Graceful, open, and vibrantly green, red huckleberry (Vaccinium parvifolium) is a quintessential Pacific Northwest native shrub. It’s not often used in garden situations, but it ought to be, considering its beauty and wildlife appeal. And unlike other native huckleberries that ripen in late summer or fall, red huckleberry typically offers dazzlingly red (and tasty) fruit in mid to late summer.

Part of the appeal of this deciduous huckleberry is its bright green, twiggy, angled branches that support smooth, oval, and equally green leaves. Flowers are small, urn-shaped and greenish-yellow, but often have a lovely pink hue. Fruit is a spherical berry high in vitamin C, which ripens to a brilliant red. At maturity, it typically reaches five to ten feet tall and nearly as wide, although it can grow larger in optimal conditions. 

Wildlife value
In late spring to early summer (depending on elevation and latitude) blossoms attract hummingbirds, native bees, and other insects. Berries are attractive to both humans and wildlife: Birds such as flickers, jays, thrushes, chickadees, towhees and bluebirds, and mammals, including deer mice, white-footed mice, raccoons, pika, ground squirrels, chipmunks, and foxes. Reportedly, the fruit is a big part of black and grizzly bears’ late summer and autumn diet. With time, this shrub may form a thicket, which provides shelter or nesting sites for small birds and mammals.

How it grows
The key to a healthy eco-garden is the choice of plants that fit your conditions and are locally native. Of course we don’t always have the exact conditions a plant requires, especially in urban situations where natural conditions have been drastically changed. Red huckleberry is a plant that will probably need some extra encouragement, but I think it’s worth the added effort. When selecting which plants will join your garden, always check on the circumstances in which it’s found in the natural world, where it’s found, and choose accordingly. 

Red huckleberry occurs naturally in the understory of moist coniferous or mixed evergreen forests, sometimes in the transition zone of wetlands or at forest edges, at low to middle elevations from southeastern Alaska and British Columbia, southward through western Washington and Oregon to central California. While it’s quite tolerant of shade (and usually grows larger in shade), it can do well in a woodland garden with some sun if it’s not drought stricken or in hot afternoon sun. Plants that get some sun, including those found in forest openings, generally appear lusher and produce more fruit if other requirements are met. It’s usually found in humus-rich soil growing on some rotting wood — often a fallen log or an old stump — so be sure to include some in very close proximity to your new plant. In a nutshell, it needs mostly shady sites (with perhaps some morning sun or dappled sunlight) and moist — but somewhat well drained — acidic soil (pH 4.5 – 6) that has plenty of organic matter, as well as some rotting wood to grow on.

Try it at home
A few autumns ago, I added a gallon-sized individual to a backyard bed situated to the north of some large native conifers, which provide some shade. My slightly acidic soil had been amended with organic matter over the years and allowed to accumulate natural plant debris, and I added what will really help its survival: Rotting downed wood to latch onto. I finished off my planting with a layer of leaf compost, topped by a few handfuls of conifer needles and cones blown down from nearby trees, all of which help retain moisture and keep pH on the acidic side. I water it deeply but infrequently during dry periods. One last tip: Vaccinium species don’t do well with root disturbance, so don’t dig in the soil near its roots or attempt to move it after it’s been in the ground for more than a year or so.

At planting time, provide red huckleberry with a growing medium of decaying stumps or logs to mimic natural conditions.

Grab a partner
In coastal forests, red huckleberry is commonly associated with plants such as mature western hemlock (Tsuga heterophylla) and sitka spruce (Picea sitchensis), black huckleberry (Vaccinium membranaceum), oval leaf huckleberry (V. ovalifolium), salmonberry (Rubus spectablis), thimbleberry (R. parviflorus), trailing blackberry (R. ursinus), strawberry bramble (R. pedatus), salal (Gaultheria shallon), Cascade Oregon grape (Mahonia nervosa), bunchberry (Cornus unalaschkensis), lady fern (Athyrium filix-femina), oak fern (Gymnocarpium spp.), and woodland strawberry (Frageria vesca). In southwestern Oregon and northern California, Pinemat manzanita (Arctostaphylos nevadensis), California coffeeberry (Rhamnus california), baldhip rose (Rosa gymnocarpa), California laurel (Umbellularia californica), boxleaf silktassel (Garrya buxifolia), and huckleberry oak (Quercus vaccinifolia) are often associated. In the western Cascades below 5,000 feet, it’s found with mature western hemlock (Tsuga heterophylla), western redcedar (Thuja plicata) and Douglas-fir (Pseudotsuga menziesii), as well as vine maple (Acer circinatum), salal (Gaultheria shallon), salmonberry (Rubus spectabilis), Cascade Oregon grape (Mahonia nervosa), sword fern (Polystichum munitum), deer fern (Blechnum spicant), fairy bells (Prosartes spp.), bleeding heart (Dicentra formosa), foamflower (Tiarella trifoliata), and many others.

 © 2023 Eileen M. Stark

Just the Thicket … For Wildlife Habitat


If you’re looking for ways to counteract — in a small but significant way — the relentless destruction of the natural world and want to turn your yard into a place that supports the wildlife community, or you already garden for biodiversity, you probably know that appropriate habitat — food, water, space, cover — is essential. Food is best supplied by regional native plants that produce insects, nectar, pollen, fruit, and/or seeds, while water comes either from natural sources or human-made birdbaths or ponds. Adequate space is important to prevent competition for food, cover, and nesting sites. Cover, or shelter, is as crucial as the others because wild fauna need places that not only shield them from inclement weather, but also hide them from predators (and people). Predatory animals themselves often need cover to successfully obtain prey. A lack of cover is a limiting factor for many wildlife populations.

Increased biodiversity comes with careful planning and placement of cover habitat supplied both vertically and horizontally with small and large native shrubs and trees. Those with particularly dense foliage may also provide valuable nesting habitat, as well as privacy for you, or even a windbreak if strategically placed.

Thickets are a great way to provide cover for relatively small animals, due to their tendency to be impenetrable to large species. They may be dense groups of trees or shrubs, usually dominated by one or a few species that tend to be multi-stemmed and often densely twiggy, or they may be formed by a single species that either enlarges via underground suckering stems or sheds large numbers of seeds that have the ability to grow beneath or close to the parent plant. Thickets of the latter type may also be spread by human disturbance. 

Even when leafless, red-twig dogwood (Cornus sericea) attracts birds.


Because thickets tend to fill quite a bit of space, they usually are not suitable for very small gardens, since they will tend to “take over” a small space, either fairly quickly or over many years, depending on the species. But if you have a fairly large yard or an acreage, native thickets create mini-ecosystems within which essential food and cover are supplied for a large number of beneficiaries, from insects and birds to reptiles, amphibians and mammals, depending on the location. They’ll also conserve soil moisture and may slow — or even prevent — erosion on slopes. And, when well established, thickets keep out many invasive weeds (note: always remove weeds well before planting any type of native plants). Many of these plants also can provide food for us, but I suggest you share with wild visitors.

Thickets often get a bad rap because they don’t look particularly neat and orderly, but if you garden for wildlife you know that messy and naturalistic is much better for the wild ones. To tidy up shrubs that tend to develop into thickets, gardeners often clip out suckers and sprouts for appearance’s sake, but that’s to the disadvantage of wild visitors.

Pollinators love thickets!

Although thickets (especially thorny ones) may not be suitable for most front yards, in back yards or other areas, they can be wonderful wildlife magnets. And when located as far from human activity as possible, they also lend tranquility in an urban environment. Though my yard is just one sixth of an acre, I have several thickets—one that’s composed of snowberry and clustered rose, several of tall Oregon grape, and a large clump of thimbleberry. It seems there’s almost always something going on: A little bird or two flitting around branches looking for food, a ground feeding bird foraging within fallen leaves, pollinators hard at work, or — during nesting season — a bird vocally establishing his territory. Flowers’ pollen and nectar attract a variety of native pollinators in springtime, fruits or seeds become available later in the year, and the rose offers a place for mourning cloak butterfly larvae to develop.

Choosing thicket species
In nature, thicket-developing plants grow in forested areas, as well as open areas such as historic savannas (a grassland with trees scattered at least 100 feet apart), upland prairies (another type of grassland) or wet prairies. Needless to say, savanna/prairie plants require more sunlight than forest thicket species. Since humans have converted most savanna and prairie habitat to agriculture and livestock grazing, those thicket species aren’t having an easy time; they’re mostly forced to live on forest edges and fence rows and are threatened by invasive species.

Prairie or savanna thickets naturally would be surrounded and complemented by native herbaceous plants and grasses that are members of a plant community, which together would create a highly supportive ecosystem. Forest species also would naturally occur with ‘associates’ that interact and flourish together.

Thorny native thickets, such as this Rosa pisocarpa, offer a place for birds to rest as well as forage.


Here are some plants that typically will form thickets in the Pacific Northwest, west of the Cascades (but it’s not an exhaustive list). Choose species that would naturally occur in your area; check native status to county level here.

For sun to part sun: Douglas hawthorn (Cragateus douglasii), Red-twig dogwood (Cornus sericea), California hazelnut (Corylus cornuta var. californica), Western crabapple (Malus fusca), Western serviceberry (Amelanchier alnifolia), Ninebark (Physocarpus capitatus), Tall Oregon grape (Mahonia aquifolium), Bitter cherry (Prunus emarginata var. mollis), willows such as Salix scouleriana, S. lucida, S. hookeriana, and S. sitchensis, red-flowering currant (Ribes sanguineum), wild roses (Rosa nutkana, R. pisocarpa), Douglas spiraea (Spiraea douglasii*), white spiraea (Spiraea betulifolia var. lucida), Thimbleberry (Rubus parviflorus*), Salmonberry (Rubus spectabilis*).

For part shade to shade: Red elderberry (Sambucus racemosa), Snowberry (Symphoricarpos albus), Osoberry (Oemleria cerasiformis), Salal (Gautheria shallon).

* may spread rapidly.

Fox sparrow foraging beneath a thicket stays safe.



© 2020 Eileen M. Stark

Pacific Northwest Native Plant Profile: Red-flowering Currant (Ribes sanguineum)


Although red-flowering currant (Ribes sanguineum) is a deciduous shrub, it offers year round appeal and habitat, making it a favorite among Pacific Northwest gardeners and wildlife, alike. Not one December goes by that I don’t marvel at its ability to hold onto many of its seasonally colorful leaves until the solstice or beyond, and this year was no exception. Just a short while later — following barely two months of downtime in the new year — strikingly gorgeous flower clusters burst forth prolifically at the same time that fresh leaves emerge. No wonder another of its common names is “winter currant.” Fast forward a few more months, and dark dusty-blue berries, a favorite of many bird species, will adorn this multi-stemmed shrub. 

The sole genus in the Grossulariaceae family, Ribes means ‘currant’ in medieval Latin. One of about 30 currant and gooseberry species in the Northwest, sanguineum refers to the reddish color of the flowers. It’s one of those native plants that had to be chaperoned by Scottish botanist David Douglas to Britain—where it was introduced into cultivation in the 1820s—before it acquired a return transatlantic ticket to popularity with gardeners on its home turf. Not too small or huge, it can usually find a home in places that offer well-drained soil and at least a quarter day of sun.

How it grows
Red-flowering currant naturally occurs at the edge of forests as well as open, rocky slopes and disturbed sites, at low to middle elevations from southwest British Columbia into Washington and Oregon between the Pacific coast and the Cascades, and as far south as central California.

Wildlife value
Pendulous flower clusters, which consist of numerous lightly fragrant, pink to reddish tubular flowers, bloom in profusion along this shrub’s many stems. They offer nectar and pollen at a time when early-emerging pollinators—such as queen bumble bees who must secure a nest and provide for offspring all by themselves—have little else to eat. The early blossoms are also attractive to birds, especially hummingbirds, but also bushtits, making this species a hub of wildlife activity for well over a month. Later on, when berries ripen as summer wanes, birds such as American robins and cedar waxwings (pictured, below) feast; we can also eat them but they are rather tasteless. The small, lobed leaves may provide food for zephyr (Polygonia gracilis zephyrus), Ceanothus silkmoth (Hyalophora euryalus), and other butterfly and moth larvae, which in turn supply food for insectivorous birds. 


Try it at home
Red-flowering currant prefers sun to part sun, and well-drained soil. While tolerant of clay soils, it doesn’t do well on poorly drained sites. Useful for erosion control on slopes, it may eventually form a thicket, which is helpful for wildlife that needs cover.

Mature size varies from around six to ten feet tall; width is typically similar, so do allow it enough space. A fast grower, it may reach four or five feet in just a few years and even produce blossoms as well. If you’re looking to use this shrub in a border, space them five to ten feet apart (on the low end if you want some density and overlap). Although this shrub is quite drought tolerant when established (after two to three years), water it deeply but infrequently in the hot summer months thereafter, especially if your site receives a lot of sun or reflected heat from buildings or fencing, or if drainage is quick. Plant in fall for best results.

The only downside to this lovely shrub is its relatively short life: typically just 20 to 30 years. But replacement is easy since it readily self-sows. Thus, propagation is best achieved via self-sown seed, which are easily dispersed by birds or fall to the ground below. If you want to DIY, collect seeds as soon as fruit is ripe in mid to late summer, remove the pulp and dry them in a shaded place; then sow in autumn (outdoors to allow for stratification). Seed reportedly has a long shelf life if stored in a cool/dry/dark place.


Grab a partner
Since red-flowering currant grows in a fairly wide range of habitats, there are a number of plants with which it interacts in intact ecosystems. For best ecological and gardening results, choose associated native plants that live in communities that currently grow or likely would have grown in your immediate area. In the Pacific Northwest, some of the plants that red-flowering closely associates with include Douglas-fir, bigleaf maple, madrone, bitter cherry, oceanspray, vine maple, elderberry, mock orange, serviceberry, manzanita, salal, sword fern, kinnikinnick, and others. 

Buy plants propagated from source material that originated as close as possible to your site. Using such “local genotypes”  helps ensure that you get plants that are well adapted to your area and preserves the genetic diversity that helps plants (and animals) adapt to changing conditions. Ask growers and nurseries about their sources if you’re unsure.

Although many cultivars—with a range of flower color—have been developed, it’s best to choose true species or varieties found in nature. A related species for very moist places is wild gooseberry (Ribes divaricatum), which has edible fruit.

© 2019 Eileen M. Stark

Pacific Northwest Native Plant Profile: Oregon grape (Mahonia species)

Mahonia aquifolium (landscape)

Oregon grape plants are colorful western shrubs with year round appeal and chances are there’s a species that will fit into your Pacific Northwest landscape. Named after Bernard McMahon, an Irish-born American nurseryman, the genus Mahonia is a member of the barberry family (Berberidaceae). But you may also see Oregon grape classified as Berberis, indicative of the extensive debate among botanists on how to classify this species. Although included in the large genus Berberis (an alteration of the Medieval Latin barberis, or barberry, from Arabic barbārīs), Oregon grape is still known as Mahonia in most commercial horticulture, so either is correct (at least as far as I’m concerned!). 

Wildlife value
Like all native plants grown where they evolved, Oregon grape plants are extremely beneficial and attractive to wildlife. Flowers provide for pollinators like bees, moths, butterflies, and hummingbirds, while the fruits, which may remain on the plant into winter, are favorites among birds such as towhees, robins, and waxwings, as well as mammals. Some butterfly and moth species rely on Oregon grape plants to host their larvae, including the brown elfin butterfly. Year round cover may support arthropods, birds, reptiles, amphibians and small mammals.

Cedar waxwings feed on Cascade Oregon grape (M. nervosa). ©Eileen M Stark


Three species
You can’t go wrong with tall Oregon grape (Mahonia aquifolium) for an evergreen, erosion-controlling, woody-stemmed, slightly prickly screen, barrier or woodland border, as part of an unpruned hedgerow, or as an accent plant (pictured top). Aquifolium means “water leaf,” likely named after the lustrous, wet-looking surface of the plant’s leathery leaves that Lewis and Clark first noticed near the Columbia River. Introduced to Britain in the 1820s as an expensive ornamental, its holly-like, pinnately compound leaves begin a bronzy coppery color, then mature to a deep green, with orange, red, or purple highlights in very sunny or cold conditions. Dense clusters of showy golden-yellow, lightly fragrant flowers appear in early to late spring. Ripening in late summer, the dusty-blue, round to oblong berries are slightly reminiscent of grapes, hence the name. Although they are tart and have large seeds, they are suitable for jams and jellies (with beaucoup sweetener) and have traditional medicinal properties, as do the roots. 

Tall Oregon grape’s range includes most of western Washington and Oregon, parts of Idaho and much of California, as well as northeastern Washington and southern B.C. It can handle nearly full sun to shade, but being a woodland species often found growing in somewhat open forests, it prefers some shade (although very deep shade will result in fewer flowers and fruit). Though it does best in slightly moist, acidic, well-drained soil, it’s an undemanding plant that can handle many soil types and drought when established. However, it is intolerant of poorly drained soils and high water tables. Since it will gradually spread into a thicket via tough rhizomes, place it away from pathways and allow it to eventually spread into a wildlife protective clump. If you don’t plan for its growth or it somehow gets out of hand, roots may be occasionally pruned and stems may be cut (as seldom as possible) nearly to the base for renewal. Arching stems typically reach four to eight feet in height, sometimes on the lower end in garden situations.

Try growing it with trees and shrubs such as Douglas-fir, western hemlock, ponderosa pine, vine maple, Indian plum, oceanspray, serviceberry, salal, and smaller companions like sword fern, western columbine, fleabane, delphinium, and others.    

Cascade (or long leaved) Oregon grape (Mahonia nervosa) is another handsome plant, but this one grows only up to about three feet tall,Mahonia nervosa often lacks shiny leaves, and very slowly spreads into a lovely, evergreen, soil-stabilizing ground cover over many years. Nervosa means “having distinct veins or nerves” and refers to the leaf venation. Showy, fragrant, erect, pale to bright yellow flowering stalks, which put on their show in early to mid spring, are trailed by the familiar deep blue berries in late summer to fall. 

This species naturally occurs in moist to dry forests, at low to mid elevations mainly west of the Cascades including Vancouver Island, often with oceanspray, osoberry, vine maple, sword fern, salal, and oxalis, but it’s also an associate of the drier Oregon white oak and madrone habitats. It prefers shade to part shade in moist, acidic soil, but can handle drought in cool areas when established. It’s a nice substitute for invasive English ivy.

Low (or creeping) Oregon grape (Mahonia repens) is an evergreen ground cover that grows one to two feet tall and four to six feet wide. It has a large range in the west; in Washington and Oregon it is mainly found east of the Cascades growing in conifer forests, so it does well in dry, shady conditions but can take some sun. Its leaves (pictured below) may be glossy or dull, tend to be rounder and—though toothed—feel less prickly than tall Oregon grape. In nature, where its range sometimes overlaps with tall Oregon grape (and in garden situations where we often place plants that Mahonia repensdon’t belong together), it may hybridize with its cousin and produce plants that are a bit taller than the true species. 

 

 

 

 

 

 

Propagation 
All Oregon grape species are best grown from seed (without drying them), with at least three months of cold stratification outdoors (wet, pre-chilled seed may also be planted in spring). Seed germination is reportedly erratic and unpredictable. If you have established plants you may find their progeny beneath them or elsewhere, as seeds are dispersed by birds and mammals; anything but very small transplants may not survive. Cuttings may also be tried in late fall. 

As always, buy plants propagated from source material that originated as close as possible to your site. Using such “local genotypes” helps ensure that you get plants that are well adapted to your area and that genetic diversity—which helps plants (and animals) adapt to changing conditions—is preserved. Ask growers and nurseries about their sources if you’re unsure.

Do you have Oregon grape but aren’t sure which species you have? This page has a handy leaf comparison (see photo on lower right column).
 
 
© 2019 Eileen M. Stark

To leave a comment, click on post’s title

Summer Berries for Pacific Northwest Birds (and You!)

Amelanchier alnifolia (fruit)

The delicious fruit of Western serviceberry (Amelanchier alnifolia).

 

If you love berries (who doesn’t?) and wildlife, you can’t go wrong with the addition of native berry-producing plants to your yard. Local native plants are crucial for native wildlife because they (unlike non-native plants) are the chief producers of insects and other arthropods that are essential to wild species’ survival, but some plants also provide highly nutritious, often tasty fruit that just happens to show up when nesting season slows down and when we develop a craving for fresh, seasonal delicacies.

When we usually think of fruit, we visualize those fleshy, sweet treats like apples and peaches. But botanically speaking, “fruit” refers to the seed-bearing structure of angiosperms, or flowering plants. Angiosperms’ fruit results from pollination of the flowers, and enables dispersal of each plant’s seeds. Their fruit may be dry, such as the seeds of grasses or milkweed, or they may be fleshy, as in the case of huckleberries, false solomon’s seal and fairy bells.

Most native fruiting plants that appeal to us don’t ripen until late in summer, but here are a few that produce mainly during the early to mid-summer months and naturally occur widely In the Pacific Northwest, west of the Cascades. (Those that produce fruit for late summer and winter will be covered in another post.) I’ve chosen the tastiest ones and you will have to beat the birds to them if you want a sample (but do try to share!). 

Western (or Pacific or Saskatoon) serviceberry (Amelanchier alnifolia) has about as many common names as it does attributes. Also called shadbush or juneberry in some parts of its large range, this attractive, deciduous large Amelanchier alnifoliashrub or multi-stemmed small tree produces fragrant, five-petaled white flowers in early to late spring that supply food for native bees, hummingbirds and butterflies. Beautiful bluish-green leaves—that provide food for many types of butterfly larvae—turn gold to reddish-brown in autumn. Delicious “berries” (botanically speaking, a pome, pictured above) attract all sorts of birds—robins, chickadees, tanagers, waxwings—as well as mammals such as raccoons, foxes, and bears. The fruit—high in vitamin C, manganese, magnesium and iron—is at its sweetest ripeness when it turns deep purple to almost black; this is usually in early summer (hence the name Juneberry), but it may occur later depending on the location. 

Typically found growing in dry woodlands or on open hillsides in well-drained soil at low to mid-elevations, serviceberry plants are quite drought tolerant once established. They do best without a lot of root competition, so space them apart from other plants if possible. If you’re growing more than one, space them at least 6 to 8 feet apart. They’re a great addition to large, unpruned hedgerows, hillsides, or anywhere you want a screen or windbreak. Offer full to mostly sun in cool areas, part shade in hotter spots, and well-drained soil. Consider growing serviceberry with associate plants like Oregon white oak, Douglas-fir, Oregon grape, white spiraea, and others. 

Several so-called brambles, members of the large Rubus family, offer tasty “berries,” which are are actually aggregate fruit, in this case made up of many individual fruits called drupelets which developed from multiple ovaries in a single flower. Besides offering fruit that appeals to two-legged creatures, these Rubus species are choice wildlife plants that provide for pollinators, fruit-eating birds and mammals, and browse species who consume twigs, stems, bark or leaves; their thickets also provide important cover for small animals.  

Blackcap raspberry (Rubus leucodermis var. leaucodermis) isn’t your typical, cultivated raspberry, but its habit is similar: Deciduous and prickly, this vine-shrub arches up to six or seven feet tall. The stems are biennial, with fruit forming their second year. Stems that have fruited may be cut out at the base (be sure to wear gloves and long sleeves when pruning or picking fruit!). 

Rubus leucodermisMid to late spring flower clusters offer nectar and pollen for native bees; the soft fruits ripen in summer when they reach a deep purple (mid-June into July in my low elevation yard). Like all wild fruits, they are very high in nutrients such as vitamin C and antioxidants (this has been confirmed by an informal survey of American robins who greatly preferred the wild to the cultivated). But not only robins: grosbeaks, jays, thrushes, sparrows, towhees and many other birds love them, as do mammals like raccoons, opossums, foxes, and squirrels. And for small animals seeking protection from predators, a thicket of prickly stems can come in very handy. 

R. leucodermis

Native bumble bee foraging at a blackcap raspberry flower.

Found naturally in open forests and moist rocky areas, it seems to thrive in both sunny and shady sites. Though not fussy about soil type, it will fruit best when kept moist. Due to its potential to travel, I have mine in a huge pot so it doesn’t take over my minuscule yard. But if you have some space and don’t mind its spread and hooked prickles, by all means find a spot. It’s an attractive plant that bears tasty fruit, but it’s best when allowed to naturalize in a wildlife garden where its function will be appreciated.  

 


Thimbleberry (Rubus parviflorus)
is another easy and fast growing bramble,Thimbleberry that comes without prickles. Its large, deciduous, soft and velvety leaves may be used by leafcutter bees for nest building.

Showy, five-petaled edible white flowers appear in late spring at the tips of young stems and provide for butterflies and bees; the tasty, bright red raspberrylike fruit ripens over the summer and appeals to many bird species, as well as small and large mammals.Rubus parviflorus (fruit)

 

 

Since thimbleberry naturally occurs in riparian areas and in open, moist to dry wooded areas, it is tolerant of moist or dry soil and full sun to partial shade. It will spread, so like cousin blackcap, it’s best in wilder gardens.

 

 

 

One other summer berried Rubus shrub is salmonberry (Rubus spectabilis), that stands out in early to mid-spring with bright pink to magenta flowers that attract migratory Rufous hummingbirds on their long journey northward, as well as other pollinators. Golden to reddish-orange raspberrylike fruit ripens in early to mid-summer and attracts the usual suspects. Its arching stems (sometimes prickly) rise up to 12 feet and spread by branched rhizomes into thickets. Typically found growing in riparian areas or the dappled shade in moist woods, it does best with moist soil but may spread more slowly without it. 

Last but not least, red huckleberry (Vaccinium parvifolium) is such a beautiful plant — and with delicious berries — that it deserves a post all its own.

 

© 2019 Eileen M. Stark

To leave a comment, click on post’s title 

 

Plants Are a Matter of Life or Death for Birds

Chcikadee feeding

Finding enough food to feed a family can be difficult or impossible when plants are mostly non-native.


I always recommend that we grow
as many native plants as we can to sustain wildlife, but to avoid overwhelming apprehensive gardeners I also mention that our yards don’t have to be exclusively native to be beneficial. Well, now there’s a number to aspire to: 70 percent native, minimum. That’s what a group of researchers have found is necessary for insectivorous birds to raise healthy young and keep their populations steady in human-dominated landscapes, the most swiftly growing ecosystem on the planet.

Their study, the first to examine the effect of non-native plants on an insectivore, looked at the connection between plants, the arthropods (insects, spiders and others) that eat and hang out on those plants, and the breeding success of one insectivorous bird species that, along with most other terrestrial birds, cannot survive without consuming arthropods. Published in Proceedings of the National Academy of Sciences, it was conducted in the Washington D.C. area by the usual suspects, University of Delaware researchers Doug Tallamy and Desirée Narango, along with Peter Marra, director of the Smithsonian Migratory Bird Center. They sought to determine how exotic plants affect songbirds’ reproductive success in urban and suburban landscapes.

Data was collected from about 150 citizen-scientist homeowners whose properties were provided with artificial nest boxes to attract paired Carolina chickadees*. Once their nests were complete, the researchers recorded life on plants within a 50-meter radius where nesting chickadees search almost incessantly for the most nutritious food they can find. During breeding season, arthropods make up more than 90 percent of their diet, which is composed primarily of moth and butterfly larvae, spiders, and Hemipterans (such as aphids and leafhoppers). During non-breeding season, chickadees will consume some plant material, but more than half of their diet is still animal-based, which may have important implications for annual survival. Throughout the year, caterpillars—rich in fat, protein and carotenoids—are an extremely important food item and essential to nestlings’ fast growth.larvae on aspen leaf

Unsurprisingly, native plants were teeming with “bird food,” while non-natives were nearly devoid of life. The reason? Most native insects need native plants because they are specialists—they co-evolved with certain plants and can feed only on them due to their chemical compositions; they cannot survive where those native plants don’t exist. 

Nest boxes were also monitored, as was the survival of parents and fledglings. Analysis of data revealed rapid declines in populations of Carolina chickadees when yards supported mostly non-native trees and shrubs. As soon as the percentage of natives falls below 70, the probability of sustaining the species drops to zero. In other words, when there is little native plant biomass, the parents either do not establish nests or they cannot locate enough food and their babies starve to death. But at 70 percent or higher, the birds can thrive and sustain their populations. The number is a baseline: The more insectivorous a bird, the higher percentage of native plants needed to support them.

Developers and property owners typically convert native plant communities into habitats composed of mostly non-native plant species. Usually chosen for some aesthetic effect or because they’re so commonly available, they are extremely poor at supporting native invertebrates at the base of the food chain and those—such as songbirds—who cannot survive without such highly nutritious prey. Non-native plants—invasive or not—appear harmless, but substantially influence ecosystems in dangerous ways. Effects that begin at the bottom of the food chain go straight up, creating so-called ‘food deserts’ for birds, which _MG_7373 sRGBmay lead to starvation and possibly local extinction. Sadly, that is the case with most yards. If we really want to help birds, we need to realize that their lives are in our hands. Small changes for us will be colossal for them.

 

 

 

Though the study focused on just one insectivorous bird species in the mid-Atlantic region, the results are applicable to migratory birds who need high quality food at stopover sites as they undertake their arduous, exhausting semiannual journeys, as well as 431 other insectivorous species (in the U.S.) that need similar support in habitats far away. Because I live in an urban area where natural cavities for cavity-nesting birds (such as black-capped chickadees and woodpeckers) are scarce, each spring our clean chickadee nest box is dutifully placed in our back yard. We have photographed mom and dad chickadees feeding their young both spiders and insects or their larvae, and for the past five years every chickadee nestling has fledged (and, as far as I know, lived to adulthood). Nonetheless, the study mentions that when spiders are a sizable part of insectivorous birds’ diets, it’s due to non-native vegetation. I can’t do much about the non-natives in my neighbors’ yards, but I can replace exotics in mine. 

Spider Treat

How we can help
Reading about shocking, dramatic declines in insects and insectivorous birds, as well as countless other creatures in trouble due to human actions can be disheartening, but this study proves that when we (and our neighbors) prioritize  regional native plants at home that have great capacity for supporting biodiversity, we can make positive change for them and ourselves as well, since supporting wildlife can be very rewarding. Clearly, countless lives depend on how we garden and which plants we choose. And the little invertebrates themselves—part of the intricate web of life—have value in and of themselves.

Quercus (oak), Prunus (wild cherry), Salix (willow), Betula (birch), Populus (aspen & cottonwood), and Acer (maple) were among the top performers on Tallamy’s list pf plants found to host lepidoptera (moth and butterfly larvae) in the mid-Atlantic states. So instead of a ginkgo tree, opt for a native oak tree. Instead of a flowering cherry hybrid, choose a native cherry (in the Pacific Northwest: Prunus emarginata). Instead of Japanese maple, plant native maple (in the PNW: Acer macrophyllum, A. circinatum or A. glabrum). Some woody PNW trees and shrubs known to host lepidoptera include native dogwood (Cornus spp.), western red cedar (Thuja plicata), serviceberry (Amelanchier alnifolia), elderberry (Sambucus spp.), oceanspray (Holodiscus discolor), western mock orange (Philadelphus lewisii), honeysuckle (Lonicera spp.), and herbaceous plants like checker mallow (Sidalcea spp.), monkey flower (Mimulus spp.), and milkweed (Asclepias spp.). Choose species that would have historically grown in your locale, whenever possible, and add associated species—those that would grow with them naturally—as well. The 30 percent leeway allows us to grow some non-natives that we love and/or food for the kitchen table.

Chickadee hungry

Regional native plants are critical for supporting wildlife like insectivores, including chickadees.

 

_____________________

* Carolina chickadees, which are very similar in appearance to black-capped chickadees, are almost entirely insectivorous during breeding. Although they are fairly common across their range, their populations declined by 16% between 1966 and 2019, according to the Cornell Lab of Ornithology.

 

© 2018 Eileen M. Stark

To leave a comment, click on post’s title

Pacific Northwest Native Plant Profile: Fairy bells (Prosartes spp.)


When you notice the enchanting, pendant springtime flowers of fairy bells
, you can almost imagine a tiny fairy jingling their corollas to create a magical sound that only she can hear. An excellent choice for moist woodland gardens or shaded perennial beds, fairybells’ genus is a member of the lily family. It had previously been classified within the Asian genus Disporum, but further analysis found that North American fairybells differ in several ways and in 1995 were ushered into the Prosartes genus. “Prosartes” means “fastened” in Greek, and refers to attachments of the fruit parts.

There are six species within the Prosartes genus, and we are fortunate that three grace the Pacific Northwest, west of the Cascades: Prosartes hookeri, P. smithii, and P. parvifolia. The latter is a rare species endemic to part of Oregon’s Siskiyou Mountains; it had always been considered a variant or hybrid of P. hookeri but recently came into its own. According to the California Native Plant Society, it is “threatened by trampling, logging and associated road usage, and road maintenance.”

Of the remaining two, the more common Prosartes hookeri (Hooker’s fairy bells, pictured above) is an upright deciduous perennial with lovely horizontally spreading branches, whose alternate leaves are arranged parallel to the ground for maximum light absorption. The upper stems and veins on the undersides of leaves are somewhat hairy. Spring blooming, bell-shaped flowers that often occur in pairs (or singly or in trios) at stem tips, are protected from rainwater by the pointed tips of leaves which channel tiny streamlets. Later in the year, oval berries, slightly tri-lobed, ripen to a bright red. They are edible, but rather bland and seedy; it’s best to leave them for wildlife or allow them to naturally propagate.

Prosartes smithii

 
Prosartes smithii (Smith’s fairy lantern, shown above) is similar, but its leaves are hairless, and its slightly larger and more cylindrical flowers (that only flare slightly at the tips) hang in clusters of two to five from the underside of stems. Their fruit is slightly tri-lobed and ripens to a golden-orange (pictured below).

How it grows
Fairy bell plants grow in moist, shaded forests or openings, from low elevations up to about 5,000 feet. Prosartes hookeri naturally occurs in British Columbia and throughout much of western Washington and Oregon, as well as northeastern Oregon and parts of eastern Washington, northern Idaho and northern and central California; in addition there is a disjunct population in Ontonagon county in Michigan’s Upper Peninsula, where it has been classified as endangered. Prosartes smithii has a smaller range—from southern Vancouver Island to Washington’s Olympic peninsula, in Oregon mainly west of the Cascades, and in northern California near the coast.

Prosartes hookeri fruit


Wildlife value
Flowers attract native bees and possibly other pollinators. Fruit ripens in mid to late summer or early fall and is eaten by ground-feeding birds such as robins and towhees, as well as small mammals like squirrels and chipmunks. Plants provide shelter for insects and other little ground dwelling creatures. 

Try it at home
Fairy bells are charming, easy-to-grow plants that ought to be grown more. Because their roots are rhizomatous, they will eventually create a small thicket, but they may be the shyest rhizomes I’ve ever encountered, at least in my yard (which isn’t exactly an intact forest): Velocity of spread is a reluctant crawl (so don’t worry about them “taking over”). Seeds do seem to propagate easily after a few years, but for these plants that is definitely an asset—I can’t imagine not wanting a lot of them!

Because they typically stay under 3 feet tall, they’re perfect a few feet in from pathways or in the front to middle of shaded beds, and although they benefit from a little bit of dappled sunlight, their tolerance for full shade seems to be fairly high. Place them, when possible, in the duff of mature trees. Leafy and woody debris is very important in the forest, and should be allowed to accumulate and decompose on the soil at home as well, since leaves, cones, fallen branches and twigs slow moisture loss and provide habitat as well as nutrients. If your soil is poor and lacking in organic matter, or if the top soil is shallow, add some low-nitrogen compost as mulch (leaf compost is good) after planting and allow whole leaves and such to continually accumulate on top to create more humus.

The leaves of Prosartes species are immune to the ravages of slugs and snails, which reportedly eat the fruits and dutifully disperse the seeds. They have quite deep (and delicate) roots, even when only a few leaves are present, so take care if you want to transplant seedlings. Those deep roots make me think that they may be more resilient and drought tolerant than we give them credit for. 

Grab a partner
Both Smith’s and Hooker’s fairy bells enjoy the company of others in the Western hemlock/Douglas-fir or coastal redwood plant community, including red alder, vine maple, osoberry, evergreen huckleberry, inside-out flower, oxalis, alumroot, trillium, sword fern, deer fern, salal, vanilla leaf, piggyback plant, foam flower, and many others.

Prosartes species are wonderful substitutes for non-native invasive ground covers such as Vinca and English ivy.


© 2018 Eileen M. Stark

To leave a comment, click on post’s title

Pacific Northwest Native Plant Profile: Pacific Madrone (Arbutus menziesii)

Arbutus menziesii bark

Although it looks exotic, Pacific madrone — a beautiful broadleaf evergreen tree with a captivating and distinctive presence that transforms with the seasons — is endemic to the Pacific coast. Its exquisite attributes — fragrant flower clusters, brilliant berries, glossy leaves, twisting branches, rounded crown, and rich cinnamon-red bark that peels from a satin-smooth trunk — please all of our senses. And for the wild ones attracted to this unique gem, its ecological gifts never disappoint.

Madrona (after madroño, the Spanish name for a Mediterranean “strawberry tree”) is the name admirers in Washington give this member of the Ericaceae (heath) family, while those in California and Oregon call it madrone or Pacific madrone. British Columbians simply use the Latin genus name, Arbutus. (The epitaph, menziesii, is named after the naturalist Archibald Menzies, a naturalist for the Vancouver Expedition that explored the Puget Sound region in 1792.)

How it grows
Pacific madrone is a large, long-lived tree that naturally occurs in a climate with mild, wet winters and dry summers, although rainfall varies substantially within its range, from the east coast of Vancouver Island in British Columbia, southward through Washington and Oregon (west of the Cascades) to San Diego County. It is often found on rocky soils and other coarse soils that retain little moisture, including the dry foothills, wooded slopes and canyons of parts of California (at low to mid-elevations); within coastal redwood and mixed-evergreen forests of California and Oregon; on dry ridge tops and slopes at low to mid-elevations along the east side of the Coast Ranges and in the Siskiyou Mountains; on warm, dry, lowland sites west of the Cascades (within Douglas-fir/western hemlock forests or Oregon white oak or tan oak woodlands); and — furthest north — near sea level on rocky bluffs and low elevation slopes. Within mixed hardwood forests — that may or may not have an overstory of conifers — its tolerance to shade varies with age. While madrone seedlings do best in partial shade and young trees can handle quite a bit of shade, tolerance decreases as trees age and for those at the northern end of this species’ range. Older trees need good light to survive and often can be found  growing at an angle, twistily and desperately reaching for the sunlight that helps ensure a long life.

Wildlife value
Wild ones are drawn like a magnet to madrone trees year round. In springtime, lovely creamy white, waxy, urn-shaped blossoms provide nectar for hummingbirds, native bees, and other pollinators.

Arbutus menziesii in flower

 

Clusters of bright red berries — that ripen in autumn and may persist into early winter — feed many bird and mammal species, including American robins, varied thrushes, band-tailed pigeons, cedar waxwings, northern flickers, quail, raccoons,  squirrels, mule deer, and bears.

Arbutus menziesii (fruit)
Habitat is provided for a variety of insects, including echo blue and brown elfin butterfly caterpillars who nibble on leaves and in turn provide dinner for insectivorous birds. Shiny, leathery leaves generally remain on branches for two years, after which they turn from vivid green to burnt orange and settle to the ground where they provide a natural mulch that protects soil microorganisms and little ground-dwelling creatures. Lofty roosting and nesting habitat is also supplied, and live trees with rotting wood offer cavities for insects as well as birds that nest in trees, such as woodpeckers and chickadees. Dead and dying trees provide even more dead wood for cavity nesters and the silent decomposers that function as nature’s recyclers.

Conservation
Unlike other trees, madrone’s fine roots have adapted to search deeply into rock fractures for stored water or “rock moisture,” making it an important plant for stabilizing slopes and cliffs and preventing landslides. In addition, it’s a valuable component of many vegetation types; for example, in mixed conifer forests like Washington’s Coast Range ecoregion (Douglas-fir/western hemlock/madrone), it provides a mid-canopy story, essential for the structural diversity of the forest.

It ought to be preserved for its own sake, for the wildlife that use it, for the ecosystems of which it’s an indelible part, and, needless to say, for those of us who revere its spectacular beauty.

Tragically, the species is currently in decline throughout most of its range, for several reasons. First, sprawling development in its native habitat has stolen many mature specimens. Though tough and drought tolerant (or more precisely, drought dependent), its roots are extremely sensitive to drainage changes, compaction, grade alteration, and other soil disturbance. Because madrone belongs and successfully grows in regional arid soil conditions that many trees cannot, landowners and developers ought to protect and save this tree at all costs.

Under natural conditions, madrone depends on intermittent fires that limit the conifer overstory (typically Douglas-fir trees). Older madrone trees can survive fire and will sprout quickly and profusely afterwards due to carbohydrate reserves within existing roots. In addition, their fruit produces many seeds, which sprout on exposed soil readily after fire. But when humans suppress and prevent natural fires, the prolonged absence of fire and consequential shade—especially on moister sites—may cause madrone trees to die.

Death or damage may be also caused by several pathogens, including a foliar fungus (Nattrassia mangiferae), commonly called “madrone canker,” that reproduces via spores and causes dieback, blackening of branches, and cankers that may spread to the trunk. A root rot, Heterobasidium annosum, can also cause serious damage. Unlike fire, “disease decreases starch accumulation in the root burl, so that declining trees are less able to resprout after the aboveground portion of the tree is killed by disease.” But prevention is possible: Susceptibility to disease is exacerbated by unnatural environmental stresses such as regular summer irrigation and the use of fungicides and fertilizers. Essentially, spores are carried by water, fungicides kill beneficial mycorrhizal fungi (symbiotic associations between the roots of most plants and fungi, which protect roots from pathogens), and studies suggest that increased soil nitrogen disrupts the mycorrhizal associations between beneficial fungi and tree roots, which in turn reduce the supply of micronutrients and water to trees, thereby increasing susceptibility to disease. Madrone trees host a large number of types of mycorrhizal fungi and have been called “a major hub of mycorrhizal fungal diversity and connectivity in mixed evergreen forests” that play a large role in forest regeneration by promoting resilience to disturbance below ground.

Madrone is also affected to a small extent by sudden oak death, a disease caused by a water-borne, fungus-like pathogen, Phytophthora ramorum, which arrived in the U.S. via live plant imports of exotic ornamentals to nurseries; it is increasingly spread by human actions, including climate chaos.

Try it at home
Despite all these threats, a madrone in the wild can live hundreds of years and may grow very large — over 100 feet tall — although in cultivation they rarely exceed 50 feet after many decades. Young trees often grow fast (up to several feet per year), while older trees typically grow at a much slower pace. In the southern, drier and warmer part of its range it grows more slowly and stays smaller.

Supplemental water after establishment is highly detrimental: Madrone cannot tolerate slow drainage, standing water, or regular irrigation during summer, which makes it susceptible to disease (as do fertilizer applications). While it has a bad reputation for being difficult to establish and isn’t for the fussy gardener, knowing what this tree needs and cannot tolerate will help ensure success. In my experience, there are seven essentials to successfully growing this tree:

1. Figure out if it historically occurred in your area. Though it’s not absolutely essential that this species likely grew in your immediate area 200+ years ago — especially since much change has occurred since then — because this tree can’t just be stuck in the ground anywhere, look to nearby natural areas to see if it might have naturally occurring relatives nearby in similar soil. In its northern range, it’s usually found growing on soils derived from glacial sands or till and gravels, while in the southern and middle parts it reportedly grows on soils derived from a variety of materials.

2. Be sure your site has the right conditions: Fast-draining, non-compacted, slightly acidic soil (pH a little less than 7), and a bright location with at least a half day of sun in northerly locations. However, seedlings need partial shade to establish, so if you have mostly sun, shield them from hot afternoon rays until well established. Site plants on a slope or area that’s elevated above the surrounding area to facilitate drainage. In my yard I tried twice to grow one-foot-tall saplings in the lowest part of my yard with sad results, despite digging in extra small rocks and gravel to increase drainage. My third attempt, which I grew myself from seed, I planted atop a short, south-facing slope, again with extra rocks and gravel. I believe that the increased drainage was what was needed; however, the seedling was also very small — only three inches tall! — so that also may have helped. Note: If you live in a very warm, dry area (such as parts of California) be sure to plant this tree on a north-facing slope, rather than in hot, direct sunlight.

3. Start with very small saplings, no more than a foot tall, as older trees do not transplant well. Once they “take,” however, young trees grow quite fast (in my yard, over a foot a year). 

4. Buy plants propagated from source material that originated as close as possible to your site. Using such “local genotypes”  helps ensure that you get plants that are well adapted to your area and preserves the genetic diversity that helps plants (and animals) adapt to changing conditions. Ask growers and nurseries about their sources if you’re unsure.

5. Plant saplings in the fall, just as winter rains begin, since they establish best when they can establish roots first, then put on aboveground biomass. You can plant them in the spring, but you’ll end up worrying about how much or how often to water; during the moist days of autumn you can just let nature decide. Do not add large amounts of organic matter into the soil that could inhibit the moisture-seeking roots from penetrating to mineral soil, and do not add fertilizers that can disrupt the mycorrhizal associations between beneficial fungi and roots. Never apply fungicides or other pesticides.

6. Give them space. To allow them to get to their full and most beautiful form, plant them at least 20 feet apart and at least 25 feet away from tall trees, especially conifers that produce deep shade. Also try to minimize soil compaction, which can be detrimental.

7. Irrigate sparingly, and preferably only during the first summer or two. During my little tree’s first spring and summer it was unusually warm and dry, and I noticed some wilting of leaves on especially warm days. I carefully (and nervously!) watered it with tepid tap water (or rain water I had collected) in the mornings around its base and outwards a few feet, keeping the leaves and stem completely dry. I did this only a couple of times a week when heat was predicted, and by the end of the summer it was in fine shape and had grown well over a foot in height. During the second summer I left it on its own, and when no wilting of leaves occurred it became clear that the little tree was self-sufficient. After another foot of growth was added, I was able to fully exhale. Sometimes a little wilting of leaves isn’t serious: when cooler nighttime temperatures return the tree may bounce back, but you’ll have to be the judge at your particular site.

Baby madrone

Baby Madrone, just 4 months after planting as a 3-inch-tall sapling. [Update, 2023: At around 8 years of age, Ms. Madrone is now nearly 12 feet tall.]

 

 
Grab a partner
It’s best to match madrones with other species that are compatible below ground—those that have similar needs and mycorrhizal associations and that would naturally occur together in nature (if you already have some non-natives that you want to keep, be sure not to grow any that need summer irrigation nearby). Which native “associated species” you choose depends on what part of the region you live in.

Madrone most commonly rubs shoulders with mixed-hardwood tree species that often have some conifer overstory (without completely shading them).  A member of the Douglas-fir/tanoak forest, madrone makes up the secondary canopy, while Douglas-fir (Pseudotsuga menziesii) with tanoak (Lithocarpus densiflorus) typically create an overstory. Less commonly, madrone mingles with coast redwood (Sequoia sempervirens) along the northern California and southern Oregon coast, and with western hemlock (Tsuga heterophylla), Oregon white oak (Quercus garryana var. garryana), and Pacific ponderosa pine (Pinus ponderosa var. ponderosa) throughout much of its range. Washington’s San Juan Islands’ open woodlands support madrone with Douglas-fir and fescue (Festuca spp.), as well as other species such as lodgepole pine (Pinus contorta), Oregon white oak (Quercus garryana), and Rocky Mountain juniper (Juniperus scopulorum). In British Columbia, Pacific madrone grows alongside lodgepole pine. Other tree species associated with madrone include sugar pine, white fir, California black oak, giant chinquapin, bigleaf maple, bitter cherry and California laurel, according to the U.S. Forest Service. Small trees/large shrubs commonly associated include vine maple, black hawthorn, red-twig dogwood, willow, hazelnut, and red elderberry. Smaller shrub associates include manzanitas, Oregon grape, ceanothus, salal, oceanspray, poison-oak, gooseberry, wood rose, snowberry, huckleberry, and thimbleberry.

A. menziesii with oaks

Madrone mingles with Oregon white oak, aka Garry oak (Quercus garryana), in parts of its range.

 

Propagation
Pacific madrone are fairly easy to grow from seed. Collect fruit soon after it ripens, generally early to mid-fall. Because one berry can have up to 20 seeds, you won’t need more than one if you just want to grow a few trees.

Separate the seeds from the pulp of a ripe, red berry (if it has dried, soak it overnight to help release the seeds from the pulp). Place seeds in a small bowl of water for 15-20 minutes; discard those that float and allow those that sink to dry in a cool place out of sunlight. Dry seeds may be viable for a couple of years if stored properly in a cold, dry place. Place seeds on top of a fine seedling mix in autumn, either in a pot outdoors or in the soil where you want a tree to grow, and cover just slightly. I like to grow them in pots so I have a little more control, but I’ve had success both ways. If you choose to use pots, keep them moist but not wet, and keep them away from slugs and snails.

Madrone seeds reportedly are able to maintain dormancy for long periods (“scores of years”) in the soil, but when conditions are just right — cold but above-freezing temperatures and adequate moisture — dormancy is broken in late winter/early spring after cold stratification has weakened the seed coat. At that point pots should be moved into a somewhat warm (if possible), bright location, but with little direct sunlight—seedlings establish best in partial shade and will grow fairly slowly. Keep them moist, but not saturated. After they have developed their second or third set of true leaves they may be moved to bigger pots with fast-draining soil (I like to use a mix of sterilized potting soil and small gravel), handling them by their expendable first set of leaves, not their delicate stems. Water them when the top inch of soil is dry; I find it’s hard to overwater with fast draining soil, but do give them time to dry out slightly. Plant them out when they’re 3 to 10 inches tall, preferably in autumn, in the conditions described above. Don’t attempt to relocate them.

 

© 2017 Eileen M. Stark

To leave a comment, click on post’s title

Take Care During Fall (and Spring) Garden “Clean-ups”

_MG_0123sRGB


The last of the warm, dry fall days are upon us
and it seems like a great time to be puttering around the garden. But this time of year is actually not a good time to be “cleaning up”—that is, removing fallen leaves and woody debris from bare soil, pruning standing plants, and making your yard look somewhat like a victim of a gardening magazine makeover. Leaves and other plant material that fall to earth are part of nature’s systems that nurture and shelter wildlife and enrich and protect the soil. Healthy soil has an uncanny ability to not only keep plants thriving, but also store carbon.

Bedtime for bugs
Leaving fallen leaves on soil is one of the best (and easiest!) things you can do to support wild ones such as birds, amphibians, and small mammals in your garden, as well as myriad invertebrates, including bees, butterflies, spiders, beetles, and worms. Leaves and other plant matter are meant to fall to the soil, to provide food for unfathomable numbers of microbes as well as the macroscopic consumers and recyclers that feed on decaying plant matter. Further up the food chain, many creatures—ground-feeding birds, for example—rely on nature’s soil cover to provide for those they need to eat, which they find under leaves and downed wood (fallen twigs and branches, etc.).

Fox sparrow

A fox sparrow finds dinner under leafy cover.

If we zoom in a bit, we might see small organisms, such as syrphid fly larvae depending on plant debris for a sort of blanket to help them through the cold, wet winter. As things warm up in springtime, some kinds of syrphid fly larvae will consume enormous quantities of aphids and leafhoppers that can harm our edible plants. Adult syrphid files (also called “hover flies” or “flower flies”) are important pollinators: spring through late summer I see quite a variety of them in my garden, probably because I prescribe a healthy dose of fallen leaves on the ground in autumn.

A leafy layer also encourages other pollinators to make it through the winter. For example, as pollination season shuts down and bumble bee workers (females) and males perish, newly crowned bumble bee queens (technically “gyne,” an impregnated queen who has not yet founded a nest but will establish a whole new generation of bumble bees next year) live on. Queens find refuge by digging a shallow tunnel in loose soil—known as a hibernaculum—that’s often tucked under leaf litter. And, many species of lepidoptera (butterflies and moths) overwinter under fallen leaves as eggs, larvae, pupae, or adults. If we disturb their slumber by blowing or raking them away, they and the ecosystem will suffer. Essentially, they and their habitat need to simply be left alone if we want them to grace our gardens and wilder spaces next year.

Pupa Western Tiger Swallowtail

Western tiger swallowtail pupa, clinging to wood, waits out the winter and spring.

Don’t cut back
Fall pruning isn’t a good idea because it may stimulate a plant to put on new growth, which could be sensitive to the lower winter temperatures soon to come. Another important reason not to prune in autumn is that branches and bark — particularly of native plant species — may support butterfly and moth pupae, (aka chrysalis). Swallowtail butterfly pupae pass the winter attached by thin threads to woody material — disguised as dried up leaves or old bits of wood to fool predators — until the warmer temperatures of spring stimulate their metamorphosis into adults. While some non-native fruit trees do need winter pruning and it’s beneficial to remove diseased and dying annual vegetable garden plants to prevent the spread of disease to next year’s kitchen garden, in all other parts of the yard, if you must prune woody plants, approach it the following spring, being sure not to disturb any nesting birds.

Erigeron speciosus (showy fleabane) seed head. When viewed closely, seed heads can be fascinating in their complexity.

Moreover, although they may look dead, the seed heads of PNW native perennials such as fleabane, fescue, goatsbeard, and lupine provide food for seed-eating birds, while their stems or stalks—pithy or hollow—provide shelter and/or cavity nests for beneficial insects like the wild bees that nest in small tunnels. If you must cut them back to the plants’ bases, do it as late as possible in springtime and, instead of throwing them away, place the cut stems in an out of the way place so that anyone using them to get through the winter won’t be discards and so that they may be used by the new year’s cavity nesters.

And, aesthetically speaking, allowing fading plants to stand during winter provides structure and form. On cold, frosty mornings they can be magically transformed into silvery jewels.

Protect and nourish the soil
Down at soil level, besides providing a haven for overwintering organisms, fallen leaves and woody debris protect the soil, which can degrade and erode fairly quickly from excessive rain, sunlight, and wind. In nature, soil is protected and mimicking the way it does that will help your soil stay healthy. And over many years, leaves decompose into layers of organic matter that feed plants naturally and gently, improve the condition of soil, and store carbon with the help of mycorrhizal fungi. The other day I relocated a plant to a spot in my front yard that’s been collectively accumulating a couple dozen inches of leaves over the past 15 years. To my delight I found the result of their decomposition: A couple of inches of soft, dark, rich organic matter that wasn’t there a decade ago. 

Even when we’re being careful, though, it’s easy to cause disturbance. A few autumns ago, as I moved a small amount of leaf litter to another area, I inadvertently uncovered an overwintering queen bumble bee. I felt terrible as I watched her stumble around, obviously weak and awoken from a sound sleep. Luckily it was a warm, dry day and eventually she flew off into the sunshine. But clearly the awakening had been a rude one, because a short while later she returned and burrowed into some loose soil covered by leaves, just a few feet from where she had been. After she was safely underground, I gingerly placed a couple of particularly interesting rocks several inches from her tunnel’s entrance, as well as some oak leaves on top of the soil to remind myself of where she slept.

Moral of the story: The more we clean up and work towards a neat and tidy garden, the worse off beneficial birds, bugs, and countless other life forms will be. If you tend to be a neatnik (like I am), try to catch yourself every time you start moving into manicure-mode and getting overly tidy—especially in the wilder parts of the yard where wildlife may visit or set up house. It just doesn’t make sense to risk losing them for the sake of neatness or to maintain a certain ‘look.’ If you have piles of leaves that have been raked off hardscape or lawn, here are additional ways to use them in your garden.


© 2017 Eileen M. Stark

To leave a comment, please click on the blog’s title

Catios Keep Cats and Birds Safe

Born to a homeless mom, Swirlee and his siblings were brought to us at about 12 weeks of age to be socialized so that they could be placed in homes, rather than live difficult lives outdoors. We adopted Swirlee, now 10 years old (in 2024), and as his personality emerged — from quiet, shy kitten to outspoken king of the castle — a catio proved to be indispensable.


What’s a “catio” and why would you want one?
A catio is an outdoor enclosed patio for cats (and sometimes their caregivers), where they can enjoy the sights, sounds, and smells of the outdoors without getting into trouble. While catios can’t provide total freedom, they prevent Kitty from getting hit by a car, being badly injured or killed by wildlife such as coyotes, acquiring fleas and all the diseases that can result from them, fighting with other cats, and upsetting neighbors who don’t like cats. They also lessen indoor-only cats’ chance of getting feline hyperthyroidism (an increasingly common feline disease caused partly by exposure to chemicals in the dust from flame retardants in bedding and electronic devices), relieve boredom, and assist in multiple-cat households when cats need their space or just a nice place to nap. Last — but definitely not least — catios help keep birds and other little wild creatures safe. Especially if you use bird feeders and/or have a “real” garden designed to attract and support wildlife, allowing your cat to roam freely creates an “ecological trap” that invites disaster, particularly when they are young or seem born to kill. New research has documented just how bad it is.

Most wild bird species — even those considered somewhat common — are in trouble and while predation by cats is certainly not the only cause of birds’ population declines, it is reportedly the leading cause of injury for wild animals treated at Audubon’s Wildlife Care Center in Portland, accounting for nearly 40 percent of intakes; numbers are likely similar at other wildlife rehabilitation facilities. Domesticated cats are predators and obligate carnivores and, despiteyellow warbler migrant their domestication, most yearn to stalk and kill prey—we can’t blame them; it’s in their DNA. Since we are ultimately responsible for our cats and their actions, it’s our responsibility to keep them indoors but also to think about their needs by offering a place to lie in the sun, breathe some fresh air, and watch a little slice of the world.

Of course, expecting a cat who has always been allowed to roam freely to suddenly agree to stay indoors may be asking too much (no matter how exciting the catio may be!). We were privileged to have had the opportunity to rescue and adopt a Katrina Kitty in 2005 who yearned to go outside (as he had at his previous home); we caved in to his demands, but only for fairly short periods mid-day when birds are least likely to be foraging, never during baby bird season, and never at night, but he did kill some birds and rodents. But young cats who are new to your household and those who have never experienced the outdoors are ideal candidates for the catio life. We have several other rescued cats and our catio is crucial for meeting their outdoor needs—they love it, especially on warm, sunny days. Even our newest rescue, Caspurr, an older gentleman who had been outdoors on his own for who-knows-how-long (probably abandoned), is very happy that we have a catio. [Update 4/2022: With great sadness, we were forced to put Caspurr to sleep last month. Fast forward a month: an unwanted, neglected, all-white kitty, now named Swan, was welcomed into our home. Swan had also been in the habit of going outdoors whenever he pleased, but he seems quite happy with just the catio.]

Many choices
There are many different types of catios, from fairly inexpensive window boxes that cost less than $100, to more expensive and elaborate designs that may include catwalks, tunnels, roofs, furniture and multi-levels (the latter is essential!). Some people design and build their custom catio themselves, as my husband, Rick, and I did, while others hire a contractor or handyman. Kits to build your own are available online. For more detailed guidance and tips, check out this article from The Humane Society of the U.S.

Before renovation–can you say “ugly”?

When we initially thought about making a catio, we considered turning half of our elevated deck into one, but it would have been very difficult and there was no way for the cats to come and go on their own—that is, no place to install a little cat door.  Our cats really love our deck, but some of them cannot be trusted not to leap eight feet to ground level. We once tried stretching some plastic netting (which I strongly frown upon) across half our deck, but it became dangerous when our little Violet got a claw caught in it and dangled in mid-air! Luckily I found her soon after it happened.

One day, it hit me: Why not turn a mostly unusable space on the east side of our house into a space for the cats? When we bought our house I thought it could be made into a little sunroom, but a catio wouldn’t require heating and insulation and such, and our house didn’t need to be any bigger.

A little history: When our house was built in 1929, there had been an exterior wooden porch, about 13 feet long by 7 feet wide, with two doors to the inside at either end. Twenty to thirty years later (in the 1950s, judging by the type of brick) someone put a concrete floor over the wooden floor and created narrow planters made with brick and mortar, and installed a huge floor-to-ceiling window and sliding glass doors. Sometime later, the space was enclosed to make it into a greenhouse of sorts, with translucent fiberglass panels for walls and roof; the planters were covered with formica (see photo above). But functionality as a greenhouse was poor: Summer temperatures soared well over 100º because ventilation was nonexistent when the exterior door was closed, and it was very cold during winter. Plus, the old fiberglass had yellowed, the carpet was filthy, and the sliding glass doors and window that covered the interior wall were single paned and very energy inefficient (and they looked awful in an older home). Renovating the space would help increase energy efficiency in our house,  provide us with a much more useable space and keep our cats happy.

The Casbah Catio
Since we did everything ourselves, it took about 5 months (of mostly weekend work) to complete, not counting the time it took to replace a window and door; during the winter months things were put on hold. Rick did the majority of the planning and work; I helped with tiling and did most of the painting (and gave moral support!). We were able to reuse some of the wood from the old structure, and some came from our local Rebuilding Center, which sells reclaimed materials (I love that place!), but we did have to buy a fair amount of new materials. Huge rocks that had been buried in the planters found better homes in the garden.

I’ve always loved the design of northwestern Africa and I was finally able to sneak some elements into this catio. The tile came from the outlet room of Pratt and Larson in SE Portland; selection varies and I think we made at least five trips there to find what would look good together. At $1 a pound, it was a great deal.

Initially, the most important task is planning. Some suggestions: (1) Try to site it where the cats will be able to see things of interest; (2) think about how the cats will be able to get in and out (it’s best to connect it to the main house because if you have to carry your cat to and fro, it may get little use after the novelty has worn off); (3) consider how you will keep it dry so it can be used year-round; and (4) be sure to give cats variety, including some elevated places to perch, cushy places to snooze, a litter box, and scratching posts. Make some sketches and draw up a basic plan. If you are going to do any demolition, be sure to figure out where you can take items (like old carpet or glass) to be recycled, rather than just throwing it in a landfill.

Here’s a basic synopsis of how we turned an unusable space into our catio: First, we removed the existing glass doors and window (and carefully smashed them up to transport to a recycler; the metal frame also was recycled). The wall was then framed in and a new, large window (that closely resembles an original window in our living room) and a door that enters our dining room were both installed. Next, the new window, door and areas below were covered and demolition began.

Demolition

Demolition Days (boyz just love to wreck things, don’t they?). Actually, we both hated this part (it was definitely the most difficult and dirtiest part—a huge mess, as you can see). Rick’s definition: “Grunt work.” We left the existing concrete foundation (beneath the brick) even though it wasn’t built well to begin with.

 

The original porch floor had never been connected to house, so that had to be fixed; we also dealt with some rot in a sill plate where a door once stood. Following that, 4x4s were added and walls were framed in. Painting was done as things progressed. Although I hate using plastic, because we wanted natural morning light to enter the catio and the house’s window and door, we chose a roof of clear, corrugated polycarbonate outdoor patio cover (lightweight, easy to install, inexpensive)._MG_8965

An outer door that leads to the back yard was then installed and we chose DIY screens to keep the cats in. Most people use a large metal mesh, but we chose recyclable aluminum screen (not nonrecyclable plastic), for several reasons: First, a few years earlier, two small immature birds had entered our house through a very small opening one morning and were immediately caught and killed by our cats; we feared this could happen with the large mesh. There is smaller mesh available, but it’s difficult to see through. Window screen, on the other hand, almost disappears from view after installation. Second, we like to have the door that connects the catio to our dining room open during nice weather and we wanted to keep insects out, and keep our cats from killing them. Of course, screen is shreddable by claws and it gets dirty, but for the most part we’re happy with it. (However, if I were to do it all over again I would opt for screens that could be removed for easy annual cleaning.) If the screens ever get completely shredded, it’s not very difficult to replace (and recycle) them. Whatever you do, don’t use plastic mesh.

Speaking of doors, we wanted a cat door so the cats could come and go as they pleased, but we were concerned about cold drafts during the winter. Rick installed a Freedom Pet Pass door, an energy efficient flap door. The only thing that’s problematic is that because our two formerly feral female cats are tiny (only about 7 or 8 pounds) and scare easily, they have trouble pushing the door outwards due to a fairly strong magnet; they usually manage by pulling it inward with their claws unless we come to their rescue. Coming inside requires less force, so that isn’t a problem for them. The door is visible at the lower left corner of the final photo, below. We usually have it propped open for the cats when the outside temperature is above 62ºF or so.

Levels are absolutely essential for felines, who often make their living by observing prey below. We placed them so they could easily hop from one to another. My cats highly recommend varied levels for bird and squirrel watching!          

Lovely Violet (now age 16), who came to us as a 5-month-old feral kitten, loves levels …

 

Luna, too!

Luna, now 14, another rescue, also loves levels, and naps in the catio on warm days.

 

We also added a bench at the far end that offers some storage space and seating.

tile backer board

Backer board was installed before tiling began.

 

 

 

 

 

 

 

tile B4 grout

Placing tile. It was finished with a light brown grout.

 

 

 

Tiling was actually fun because we were on the home stretch and it brought such warmth and a personal touch. The cats couldn’t care less, but we love the tile. We added a soft brown grout between tiles.

 

Finishing touches: A large log (found near a river bank) was also added, as well as final bits of woodwork and paint. Scatching post, litter box, water bowl, lantern, grass for grazing, and cushions for comfort (with washable covers) were the final touches to our Casbah Catio.

The Casbah Catio

Swirlee & Luna enjoying their Casbah Catio. We later wrapped portions of the log with sisal rope to entice climbers, but so far it’s only been used for scratching.

 

© 2017 Eileen M. Stark

To leave a comment, click on post’s title

A Little Bird Tells Us About the Necessity of Native Plants

Chickadee with larva
It’s often noted that native plants and animals depend on each other
because the two evolved specialized relationships together over thousands of years, but that’s a basic explanation that doesn’t offer any details. I’ve often wondered about individual animal species and to what extent native plants are essential to them. I watch ladybugs devouring aphids on native perennial, shrub and tree leaves, warblers foraging for insects in various shrubs and trees, and black-capped chickadees bringing squirmy larvae to their hungry nestlings. But how much do birds really benefit when we choose to grow natives?

To my delight, a new study that focuses on one insectivorous bird species—the Carolina chickadee (Poecile carolinensis)—was recently released in Biological Conservation. Chickadees—whether they’re Carolina, Black-capped, or Chestnut-backed—are fairly common backyard species that, like most birds, don’t reproduce on seeds and fruit but instead eat and feed insects to their young. The study’s authors evaluated regional native plants, but also those that originated outside North America to see if they were a limiting factor for this particular species’ ability to effectively raise babies. Their results prove that non-native plants reduce the quality of habitat for Carolina chickadees by not providing enough food for their young.

Insects are crucial
It is the living environment—including insects—that sustains us and every other species. Herbivorous insects make up more than a third of the world’s animals, and their role is indispensable: By converting plant material to protein, they are nature’s only way of getting plants’ energy into animals who don’t eat plants directly, as well as into the animals who eat the ones who feed on insects.

Most herbivorous insect species are called specialists, meaning they can’t choose what they eat. Their menu is short: They must rely on only certain types of plants (that they evolved with) which have certain chemical compositions that support them, and can’t exist where those plants don’t exist. A well-known example is the monarch butterfly—an insect whose larvae can only feed on native milkweed plants—but there are countless others. If you already recognize the charms of regional native plants and have witnessed how growing them attracts more wildlife to your yard, all of this comes as no surprise. Native plants host and support more native herbivorous insects and, consequently, more birds and other wild ones.

Egg cluster for Baby

In addition to insect larvae, occasionally parents feed adult insects or clusters of insects eggs (shown here) that are most likely found in native plants.

The study
During the study’s two-year survey in the Washington, D.C. area, the research team correlated the birds’ diets to the plants they forage in. Using 97 suburban yards, they determined the species and origin of each tree and shrub, then checked the leaves of 16 plants at each site for caterpillars while tracking which plants received the most foraging visits from chickadees. Nest building in and near each yard was also examined through- out the chickadees’ breeding period, roughly April to early June on the east coast. Data revealed that these birds were more likely to nest in yards with native trees and shrubs than in yards with ornamentals that evolved outside North America. The native trees used the most included oaks, elms, cherries, and maples due to their ability to support the larvae of lepidoptera (butterflies and moths) and sawflies, which are essential for rearing young chickadees. Baby chickadees (and other birds) need a lot of food to survive: Previous research has shown that these busy parents need to collect 5,000 to 9,000 bits of food (depending on the clutch size of the brood) per nestful of chickadees, plus feed themselves!  According to the Cornell Lab of Ornithology, “during a lodgepole needle miner [an insect that can kill trees] outbreak in Arizona, one chickadee was found with 275 of the tiny caterpillars in its stomach at one time.”

The native connection
Chickadees are generalist foragers, meaning they’ll look for food nearly everywhere, not just on certain plants. They will forage in non-native plant species but won’t find much, since few host the food they need. In my experience, black-capped chickadees may also feed their babies some adult insects and the occasional spider (which may be found almost anywhere), but in native trees such as oaks, a high diversity of larvae can be found, and large numbers of them can often be found quickly. Douglas Tallamy’s research has found that a small percentage of plant genera support the majority of Lepidoptera. Other research found that woody plants apparently support many more Lepidoptera species than herbaceous plants do. Whether that is because “woody plants in general are both longer lived and larger than most herbaceous plants and thus may be easier targets for insect herbivores to exploit,” or because “herbaceous plants are underreported as lepidopteran hosts because they are more difficult to identify and less conveniently searched by collectors,” we ought to grow more woody plants to maximize biodiversity, if only to give the benefit of the doubt (and provide birds more cover and potential nest sites). And, as I reported two years ago, another study confirmed that relatives of native trees (i.e. scarlet oak,

Chickadee young are fed by their parents for several weeks post-fledging.

Young chickadees need to be fed by their parents for several weeks after fledging.

a distant cousin of the west coast’s Oregon white oak) host and support fewer species of insects than the native counterpart, and that non-native trees that have no native relative in a region provide next to nothing. Yard after yard of ornamental, introduced species effectively destroys insect diversity and harms native wildlife.

So, now we have more compelling evidence that growing natives can improve the human-dominated landscape by supplying numerous ecological advantages—including the ability to support the entire life cycle of insectivorous birds—and beauty. Whatever benefits the chickadees will also benefit other species, and increase biodiversity overall. The Douglas-firs in the back of my yard and the towering elms in the parking strip on my street nearly always have birds in them. Besides chickadees, I see woodpeckers, nuthatches, warblers, kinglets, bushtits, and more. The chickadees simply tell us what they all need.


© 2017 Eileen M. Stark

To leave a comment, click on post’s title

A Winter Treat for Wild Birds: Plant-Based Suet

Black-capped chickadees love peanut butter-coconut oil suet!

Black-capped chickadee, salivating over peanut butter-coconut oil suet.

 

Back by popular demand, here is my vegan ‘suet’ recipe for wild birds trying to make it through cold weather. While the insects, fruit, or seeds provided by native plants are the best way to feed birds (because those who eat at feeders are much more likely to get sick and spread disease), there are times when they could use some help getting through frigid days and nights. Small birds especially, with their remarkably rapid metabolism, need to find enough calories for the day but also build up fat reserves to get through their lengthy nighttime fasts—all in the course of the minimal daylight hours of winter. Young birds have it the toughest since they have to compete with mature birds who have better access to food and roosting sites. Despite their amazing abilities to get through cold, stormy winters, some do die during especially stressful times.

Yellow-rumped warbler with a mouthful

Yellow-rumped warbler with a mouthful of raisin.

This “suet” contains a lot of fat and protein and seems to be more appealing to birds than the traditional, animal-derived suet. It also lacks the probability of antibiotic and who-knows-what-else contamination, and the “yuck” factor inherent in store-bought suet (Wikipedia describes “suet” as “the raw, hard fat of beef or mutton found around the loins and kidneys.” Yumm … ). And, the fats in this recipe used in place of the dead animal lipo — especially the coconut oil — pack in the health benefits. I strongly recommend using organic ingredients whenever possible considering the deplorable loss of birds and other animals to pesticides and the harmful effects of synthetic fertilizers.

Bushtits awaiting their turn at the suet feeder

Bushtits anxiously await their turn at the feeder.

This recipe also helps you avoid participating in the sheer misery and environmental destruction associated with animal agriculture. Of course, other solid fats have their pitfalls. I passionately avoid palm oil—the cheap fat linked to climate change, tropical deforestation, habitat degradation, animal cruelty, and indigenous rights abuses—which seems to be found in almost every processed product under the sun these days. And while coconut oil, which I combine in this entree with peanut butter, is far from a perfect ingredient, it is slightly less problematic, especially if you buy organic and fair trade. And, making your own means no plastic to dispose of.

Which birds might flock to this suet? In my yard, a lone, very bossy male yellow-rumped warbler named Rumpy (pictured above) makes a point to come back every winter for his suet, but northern flickers, downy woodpeckers, bushtits, black-capped chickadees, chestnut-backed chickadees, scrub and stellar’s jays, juncos, Bewick’s wrens, nuthatches, and song sparrows are common patrons as well (with Rumpy’s permission, of course). 

 

vegan suet ingredients
Here is the recipe for one small (roughly 6 ounce) “cake.”
Double the recipe for large feeders.
Bonus points if you use organic ingredients!

¼ cup coconut oil, preferably unrefined
¼ cup unsalted peanut butter, preferably chunky
⅛ cup + 1 to 2 tablespoons raw, unsalted sunflower seeds
⅛ cup + 1 to 2 tablespoons raw coarse corn meal (aka polenta)
⅛ cup + 1 to 2 tablespoons raw millet, hulled or not
1 to 2 tablespoons chopped raisins or other dried fruit, optional
Additional chopped unsalted peanuts or nuts, optional

Directions: Gently warm coconut oil over very low heat (or in microwave under low power) just until it starts melting. Remove from heat and stir in peanut butter, then other ingredients. (Add more dry ingredients if it’s runny.) Spoon the mixture into a mold (small storage containers work well) that will fit your feeder. Cover and freeze on a flat spot for at least an hour before popping it out of the container and placing in your feeder outside.

If it’s very cold outside I store it in the refrigerator for a few hours so it’s not impenetrably frozen when placed outdoors. Likewise, when nighttime lows are predicted to go below around 30°F I bring the feeder indoors at night and keep it in a cool spot (less than 60°F) and place it outside early the following morning.

TIPS:
♦ This suet is intended only for cold weather and will begin to soften at temperatures above 60º F or so. It will become a drippy mess if subjected to sunlight in such weather.
♦ To prevent disease transmission, be sure to clean suet feeders with hot soapy water and rinse well before each refill. No bleach.
♦ Rotate bird feeder positions to reduce the likelihood of birds eating poop-contaminated food on the ground, and if you have more than one feeder, space them apart to keep birds from getting unnaturally close.
♦ To reduce the chance of window strikes, place all bird feeders either within 3 feet of your house or at least 25 feet away.
♦ To keep squirrels and other rodents at bay, hang feeder on a pole with a squirrel baffle, placed at least 8 feet from any jumping place.
♦ Suet feeders with tail props are nice for woodpeckers like flickers who normally feed with their long tails supported vertically.
♦ 
Extra cakes may be stored in your freezer for several months or in your refrigerator for a week or two.

downy female

Downy woodpeckers love this suet recipe!

 


© 2017 Eileen M. Stark

To leave a comment, click on post’s title

Pacific Northwest Native Plant Profile: Red-twig Dogwood (Cornus sericea)

Cornus sericea ssp. occidentalis

Red-twig dogwood is one of those multitalented shrubs that grows in a variety of moist habitats, provides significant wildlife habitat, and keeps us enthralled year round. Also known as red osier dogwood and creek dogwood (among other common names), it is a multi-stemmed, deciduous, long-lived and fairly fast-growing shrub that develops into an open, somewhat rounded thicket. Its common name comes from signature reddish stems which become brightest in winter. Botanically speaking, it’s known as Cornus sericea (syn. Cornus stolonifera). Sericea comes from the Latin “sericatus,” which means “silky” and describes the soft texture of the leaves and young twigs. Stolonifera refers to its lower stems or branches that tend to tiptoe horizontally and grow roots when they touch the soil.

Besides its vibrant red stems, this plant has oppositely-arranged, deep green leaves that turn an array of colors as the days shorten in autumn. On this sunless late November day in my back yard, the leaves range from a soft gold and pale orange to deep red, and they’re becoming more purplish-red each day. Come spring, four-petaled creamy white flowers will appear in clusters in May to July and will be tailed several months later by soft white to pale blue fruit (shown above) that may persist into winter if the birds don’t devour them.
Cornus sericea

How it grows
Red-twig dogwood has a large range—from Alaska and northern Canada from coast to coast, and as far south as Virginia in the east and Chihuahua, Mexico in the west, at low to middle elevations. There are two subspecies: C. sericea ssp. occidentalis, which occurs in the Pacific Northwest, Alaska, California and British Columbia, and C. sericea ssp. sericea, which is found much more widely. Differences are miminal, with the latter having slightly larger flower petals and fuzzier leaves and shoots. Both typically occur in moist, open sites such as meadows, bogs, floodplains, and near shorelines, but they also can be found under forest canopy as well as within more open woodlands in or near riparian areas.

Wildlife value
Red-twig dogwood is important for providing diverse structure, cover, nesting habitat, and a variety of edibles for insects, mammals, amphibians, and a large number of bird species. Bees and other pollinators, such as butterflies, use the flowers for nectar and/or pollen. Birds (including waxwings, thrushes, band-tailed pigeons, northern flickers, and grosbeaks), small mammals, and bears dine on its fruits—one or two-seeded drupes which are reportedly very high in fat—in summer and fall. According to the US Forest Service, “moose, elk, deer, bighorn sheep, mountain goats, beavers, and rabbits” commonly browse the stems; twigs and new shoots provide especially delectable and nutritious winter browse. Last, but not least, this shrub provides cover and important nesting habitat for songbirds, small mammals and amphibians, as well as host plants for the larvae of butterflies like the echo blue butterfly.

Cornus sericeaTry it at home
Although fairly shade tolerant, plants growing in full sun typically grow much more compactly than those in shade, usually bloom more profusely, and exhibit more stem color. Depending on the amount of sun it receives, red-twig dogwood can grow from about 6 to 16 feet tall, and nearly as wide, so it may be best to leave it out of very small gardens. If you have the space, use it in any moist area where you’d like spectacular aesthetic appeal as well as valuable wildlife habitat: At the back of a border, next to a rain garden, as a somewhat open screen, as part of a large hedgerow, or to stabilize eroding soil on slopes. Plant it in the fall to give it an easy start in life, adding some leaf compost if your soil is in poor shape. Allow future leaves to stay where they fall.

Damp soil is important, and slow-draining soil is not a problem (although this plant shouldn’t have its feet immersed in water for prolonged periods). Though its tolerance for drought isn’t terribly high, with a little shade and soil that’s rich in organic matter, infrequent summer watering during excessively hot periods should be all that is needed once it’s established (typically just a couple of years). And, allowing for a dry period at the end of summer is actually a good and natural thing (as long as the plant looks healthy), since a bit of drought prepares the plant for winter. Red-twig dogwood is often planted at restoration sites, which are rarely watered afterwards, and most usually do fine.

Grab a partner
Since red-twig dogwood grows in such a wide range of habitats, there are a number of plant friends with which it would like to live. For best ecological and gardening results, choose associated native plants that live in communities that currently grow or likely would have grown in your immediate area. In the Pacific Northwest, some of the plants that closely associate with red-twig dogwood include western redcedar (Thuja plicata), Douglas-fir (Pseudotsuga menziesii), vine maple (Acer circinatum), alder (Alnus spp.), willow (Salix spp.), aspen (Populus tremuloides), paper birch (Betula papyrifera), gooseberries (Ribes spp.), black hawthorn (Crataegus douglasii), lupine (Lupinus spp.), aster (Symphyotrichum spp.), and many others.


© 2016 Eileen M. Stark

To leave a comment, click on post’s title

 

Cultivate Compassion in the Garden (and Beyond)

painted turtles

Whether they’re hidden within fur farms or factory farms or other atrocious places—mistreated and maligned for profit—or in plain sight and struggling within unraveling ecosystems that disappear a little more each day, the suffering of non-human animals due to our expansion and behavior is everywhere. On an ecological level, the most devastating consequence of our ubiquitous presence is the disappearance of wild species that just need to be left alone. They want to live on, and in peace, just as we do. They have just as much right to exist without harm and suffering as we do.

Habitat destruction (including that caused by climate chaos) is not painless and is the main threat to most wild flora and faunas: Less than four percent of original U.S. forests remain; oceans are dying; waterways are heavily polluted with toxins; farmland is quickly expanding; a new study shows that in the past 20 years we’ve managed to destroy a tenth of the earth’s wild areas. Half of North American bird species are predicted to go extinct by the end of this century and some especially sensitive amphibians are already there. We’re the most invasive, destructive, and over-consuming species ever to walk the earth, and it’s costing us the earth, as well as our health and happiness.hermit thrush

Our big brains are burdensome as we thoughtlessly invent things that damage and destroy, but they’re also an asset when we realize our obligation to protect and sustain. Habits of exploitation can be broken. We can stop pretending that everything is fine or beyond our control, and realize that we are very much a part of nature. We don’t have to, for example, conform to having manicured, high maintenance, lawn-dominated landscapes that require massive chemical and fossil fuel applications just because other people have them. We can make choices based on caring what happens to those downstream, just as we wish those upstream would to do to us.

When our species was young, we weren’t separated from nature. Even now, within our bubbles that disconnect, we enter this world not with a fear of natural processes and wild creatures, but with an intense curiosity. But as kids we learn to be fearful—we’re taught to fear the proverbial “big bad wolf,” and trepidation of wildlife and natural processes continue throughout many people’s lives. Education can help change that, and even awaken us to the awe-inspiring, interconnected layers that nature has fashioned over eons of evolution.

Courtesy Predator Defense

Photo courtesy Predator Defense

Just as essential is empathy for other species (that is, looking at their world from their point of view, with compassion). It may be our most important capability and what is sorely needed to bring some balance to the earth’s members. When we allow empathy to guide our choices and practices, we act selflessly and gain empowerment along the way. Changing our ways isn’t always difficult and some changes can be very simple; it just takes some thought and a little motivation. With compassion we can defiantly say “no” to synthetic toxic chemicals crafted by mega corporations that discriminate against other species and seek to control the natural world, “no” to wasteful monoculture lawns, and “no” to merely decorative plants with zero wildlife appeal. We can say “yes” to planning gardens that not only look pretty but also benefit and sustain other species,  “yes” to keeping Fluffy and Fido away from birds and other vulnerable creatures, “yes” to keeping outdoor lights off and making windows visible to birds, and “yes” to initiatives and politicians that seek to preserve and protect natural areas. There are, of course, countless other ways to express compassion for the planet outside the garden.

It’s easy to think that the war against wildlife—from the microorganisms within degraded soil to persecuted predators trying to survive on a human-dominated planet—is happening somewhere “out there.” While a huge percentage of wild lands are dominated by livestock ranching that has “caused more damage than the chainsaw and bulldozer combined,” urban and suburban spaces—including the roughly 40 million acres of land that’s currently lawn—offer an important conservation opportunity and a way for us to personally provide for others right at home.

It’s equally easy to be pulled down by the ticking extinction clock, but once we turn our backs on conventional gardening, we become part of a conversion—or revolution, if you will—that is proactive. Learn how healthy, balanced ecosystems function; watch native plants (especially when grown with others that co-occur in the Native bumblebee on Vancouveria hexandraarea) attract and support a diversity of native insects and other creatures; recognize the  bees and the flower flies and the birds that depend directly or indirectly on those plant communities; discover their life cycle and how to keep them healthy and protected. Plant trees, let the leaves do their thing, allow the dead wood to stay, and forget about pesticides and synthetic fertilizers. If we do all that, we’ll find ourselves more connected and caring even more about what happens within the dwindling, wilder ecosystems on this beautiful planet, and wondering how even more beautiful it will be if more of us empathize with other species.

 

© 2016 Eileen M. Stark

To leave a comment, click on post’s title

Fragrance in a Northwest Garden: Western mock orange (Philadelphus lewisii)

Philadelphus lewisii

Had Carl Sandburg penned a poem about the way a captivating scent wafts through the air — prior to his famous “Fog” — he might have written that it approaches us “on little cat feet.” Like fog, scent is silent and invisible and adds a fresh, sensual dimension to a garden (or a walk in the woods for that matter). One of the most fragrant flowering shrubs is mock orange, and the Pacific Northwest’s native offering, Philadelphus lewisii (Western mock orange or Lewis’ mock orange), doesn’t disappoint. Plan ahead and place this medium-sized deciduous shrub where its fragrance can be noticed.

Philadelphus lewisii is named after scientist and explorer Meriwether Lewis, who collected it in 1806 during the Lewis and Clark expedition. Native Americans had numerous uses for it, including making tools, snowshoes, furniture, and even soap.

How it grows
Although there is quite a bit of individual variation within this species, the structure and growth pattern of this particular shrub goes something like this: Maturing at 5 to 10 feet tall and nearly as wide, this fairly fast grower may send out arching basal shoots as it ages, and eventually become a thicket. In late spring, flowering shoots appear, followed by vegetative growth. Rich green, egg-shaped leaves (roughly three inches long) grow in pairs along its stems. At the tips of branches, multiple clusters of white, four-petalled blossoms adorned with soft yellow stamens emerge in late spring or early summer and sparkle against a green, leafy backdrop. Flowers measure one to two inches in diameter, and offer a lovely, fruity fragrance.

Wildlife value
Mock orange’s fragrance doesn’t just appeal to us, though—it attracts nocturnal moths and butterflies like the western tiger swallowtail. As they feed on its nectar and incidentally brush against theSyrphid fly on Philadelphus lewisii flower’s anthers, thousands of male pollen particles are released, pollinating its flowers. Other pollinators attracted to scent include bees, but also syrphid flies (aka flower flies), which are particularly fond of white and yellow flowers. In late summer into winter, mock orange’s wildlife appeal continues as the plant’s tiny seeds are consumed by many species of birds, including goldfinches, as well as squirrels. It also provides twiggy cover year round.

Try it at home
Mock orange is easy to grow. It tolerates both drought (after it’s established, of course) and moisture, and will do well in full to part sun or in a fair amount of shade (but not deep, dark shade). It’s also a good shrub for stabilizing soil on slopes due to a fibrous root system. While it’s not fussy about soil, if your soil’s in bad shape consider incorporating and/or mulching with some decomposed organic matter (like compost) to get it off to a good start.

It’s best to let native plants attain their natural size and habit, but if yours was placed too close to a path or some such, pruning may be necessary. Mock orange should only be pruned soon after flowering since next year’s blossoms develop on the previous year’s growth.

Philadelphus lewisii

 

Grab a partner
Though not common, western mock orange is widespread. It occurs naturally from southern B.C. to northern California and the Sierras, and east to Alberta and western Montana, at low to mid-elevations. Growing along creeks and seeps and forest edges, on hillsides, and within chaparral and pine and fir communities, it associates with species such as Douglas-fir, oceanspray, ninebark, osoberry, baldhip rose, tall Oregon grape, and others. If space allows, try it as a member of a multi-species (unclipped) hedgerow (should pruning be necessary, do it soon after flowering, so that the following year’s blossoms aren’t affected). To stimulate flowering on older shrubs, cut back flowered growth to strong young shoots, cutting out up to 20 percent of aging stems near their base.

Other fragrant PNW plants include wallflower (Erysimum capitatum), Nootka rose (Rosa nutkana), clustered rose (Rosa pisocarpa), bald hip rose (Rosa gymnocarpa), Oregon grape (Mahonia spp.), fringecup (Tellima grandiflora), serviceberry (Amelanchier alnifolia), checker mallow (Sidalcea spp.), oceanspray (Holodiscus discolor), some ceanothus (Ceanothus spp.), bear grass (Xerophyllum tenax), milkweed (Asclepias spp.), madrone (Arbutus menziesii), and black hawthorn (Crataegus douglasii). Enjoy!

 

© 2016 Eileen M. Stark

To leave a comment, click on post’s title

Killer Windows: How to Help Stop Bird Collisions

Varied thrush


UPDATE September 2024: Thirty
wildlife conservation organizations from 24 states filed a legal petition that asks the U.S. Fish and Wildlife Service to establish a process for commercial buildings to protect birds from deadly window collisions. It proposes a permitting process under the Migratory Bird Treaty Act that would require building owners to use proven techniques that make glass visible to birds, in order to reduce collisions.

 

When I read a recent post from my local wildlife rehab center announcing that they’ve been caring for four varied thrushes in their facility—all injured by window collisions—it got me thinking. This winter I’ve seen just one of these gorgeous birds in our yard. Might others have been victims of window collisions? I certainly hope not, but the rehab center reportedly takes in several hundred window victims each year, and it’s not hard to imagine that countless others die out of sight, often slowly and painfully. Certain species—such as thrushes, cedar waxwings, warblers and woodpeckers—are more likely to fly into reflective glass, and migratory species are also at high risk, as well as birds like herons and owls. According to the Bird Alliance of Oregon, “Whether the species is rare or common, young or old, resident or migratory, most birds are at risk of collision-related injury or death.”

Studies conclude that the more glass on a structure, the greater the chance of mortality, and windows that reflect surrounding vegetation create three times more risk than those that do not (Kummer et al. 2016b). And since birds are attracted to native plants, the risk increases.

Photo courtesy Cornell Lab of Ornithology

Photo courtesy Cornell Lab of Ornithology

A billion deaths a year
Contrary to popular belief, it’s not unusual for birds to collide with windows. In fact, ornithologists say that bird fatality by collision with manmade structures is second only to habitat loss that’s brought on by agriculture, industrial forestry, urban development, invasive species, and climate change. The number of deaths due to window strikes is appalling: An estimated one billion birds die each year from encounters with reflective surfaces in North America! Birds who don’t die quickly from injury may suffer slow, painful deaths or become easy prey for predators. Many bird species, such as the elusive varied thrush, are already in steep decline, and deaths by collision only exacerbate the problem. And it’s getting worse—as urban areas grow, the quantity and size of obstacles increase and natural habitats degrade. Stopover habitat for migratory birds is getting smaller and smaller and more fragmented as humans encroach on what once was grassland, wetland, shoreline, and the like.

Large urban buildings may be the most notorious killers, but any unobstructed, reflective window can kill and large rural structures are the most problematic: A study in Biological Conservation confirmed that rural buildings are worse than urban skyscrapers because they happen to be right where birds forage. The authors surveyed 40 college campuses across the continent and discovered that sites with abundant shrubs and trees in a 160-foot radius were the deadliest. Furthermore, since many birds travel along undeveloped migration routes, well lit towns and office parks they come across have a greater chance of distracting them. There is also speculation that there may be an innate behavioral difference among rural and city bird populations, with urban birds possibly having learned to avoid windows and other structures following a few non-fatal crashes. Rural birds would lack that training, which could make them more vulnerable. This would explain why thrushes and woodpeckers would be some of the most vulnerable species, since they adapted to forest environments.

What they see
Birds don’t see window glass and shiny or mirrored office buildings like we do. They see a reflection of trees, shrubs, and sky that appears to be a clear path, and consequently fly into it. tree reflection in windowMoreover, some fruit-eating species may get intoxicated by eating fermented berries and are more likely to hit windows while flying “drunk.”

Or, birds may see through clear glass (such as two corner windows perpendicular to each other, a solarium, or a bus shelter) and are deceived into flying right through as they try to get to vegetative cover that they see beyond the glass. Reportedly, this can also happen if indoor plants are situated right next to windows.

Some species (such as robins and bushtits) see their reflection during breeding season, view it as an intruder to their territory, and actually attack the glass—I’ve seen it happen. This territorial behavior can be intense, but they usually aren’t seriously injured (unlike the other situations). These territorial strikes can also happen at car windows.

How you can help
Because windows are everywhere, it’s easy to think that the problem is too overwhelming to do anything about. But any bird-friendly change you make to your property’s windows can help. Especially if your good intentions attract birds to your yard—with feeders and/or native plants—or you’ve noticed birds hitting your windows, it ought to be compulsory.

Bird strikes often follow a pattern, with the same windows repeatedly struck. If you have a lot of windows, take some time to identify which windows are problematic, paying attention to bird attractants like food, water, and cover. Look at your windows from a bird’s point of view. 

Most of the following remedies work either by blocking reflective glass or making it visible to birds by giving them visual cues. Sheer curtains and blinds closed part way may help cut down on reflection, but they don’t fully eliminate it, so don’t rely on interior remedies. Silhouettes placed on the inside of windows do not work because birds still see the reflection.

DIY suggestions:
♦  Locate all bird feeders and bird baths at least 30 feet from windows, a distance that allows birds to see that windows are part of a house. Or, keep them very close—within 2 feet—to reduce the chance of high impact collisions. If that doesn’t help, either add additional protections or remove the feeders or baths altogether.
♦  If any of your windows have a clear view through your house to another window, create an obstruction (such as curtains) that blocks what may appear to birds to be a flight path.
♦  Keep taut window screens on year round if you have them, or consider adding them. Screens block reflections considerably and soften any impact. Keeping your windows dirty may also help!
♦ Make your own “zen wind curtains,” which are practical and effective and don’t look the least bit odd.
♦ Apply patterns (a few inches apart) with soap on the outside of windows—use stencils found at craft stores, or make your own. The patterns can be wiped off and redone when necessary. They are very inexpensive but may may be impractical for windows that receive rain or are hard to reach.
♦ For birds who fight with their reflection, simply hang a cloth or apply some masking tape to the area for a few days to break the bird of the habit.
♦ Be sure that blinds, shades and/or shutters are in place and closed to reduce nighttime light that attracts and confuses birds.

Products for purchase:
♦ Decals that reflect ultra-violet wavelengths of light—which birds can see but we can’t—are applied to the outside of windows. Follow manufacturers instructions for adequate coverage (aim for 80%), generally a few inches apart. Some examples include Window Alert (pictured) and BirdTape,  which provide a stoplight for birds. In direct sunlight, decals will need to be replaced more often than in shade, so be sure to keep track of when you put them up. If you have a lot of windows to cover, BirdTape is more economical and may last longer. UV decals placed on outside of window
♦ Films like CollidEscape, that appear opaque to birds but transparent to you, are applied to the outside of windows.
♦ Feather Friendly adhesive dots are applied on the exterior of windows in a “frit” pattern.
♦ External awnings or sun shades help minimize both reflection and transparency.

Architectural solutions:
Planning on remodeling or building a new home? Are you an architect or developer? The Resource Guide for Bird-Friendly Building Design is a comprehensive publication that offers excellent info and workable solutions for reducing collisions in commercial areas as well as residential. Also check out the American Bird Conservancy’s Bird-Friendly Building Design and the City of Toronto’s Bird-Friendly Best Practices: Glass. All are well worth a read.

Other important recommendations:
At night, turn off lights in office buildings (all levels), especially during spring and fall migrations. At home, pull your shades or draw draperies, and install motion censors on outdoor lighting, rather than leaving lights on at night. All of this prevents disorientation of migratory birds traveling at night and cuts down on other negative effects of artificial light pollution.


If you find a bird on the ground near a window: Slowly and gently cover and catch the bird with a lightweight, soft cloth and carefully place it in a small box (such as a shoebox) that has air holes and is lined with a soft cloth or paper towels rolled into a doughnut shape to keep the bird upright. Handle the bird as little as possible and keep the box securely closed. Do not give food or water. Place the box in a quiet, dark, and pleasantly warm place, away from other animals, noise, and children. If the bird has an obvious injury like a cracked bill or dangling wing, transport it immediately (in the darkened box ) to a licensed wildlife rehabilitator—broken bones need attention quickly. If there are no obvious injuries, quietly check on the bird several times over one to two hours—outside and away from human activity and buildings in case the bird can fly—but don’t touch it. If the bird develops swollen eyes or becomes unresponsive during the hour, quickly transport it to a wildlife rehabilitator. If the bird seems alert and can stand on its own, place the box in a quiet spot and open it. Move away, remain still and out of sight, and wait. If s/he doesn’t fly away within 5 or 10 minutes, carefully and quietly take the bird to a wildlife rehabilitator. Remember that, other than transporting a bird to a rehabilitator, it is illegal to handle migratory birds without a license.


 

© 2015 Eileen M. Stark

To leave a comment, click on post’s title

 

Drought’s No Fun for Wildlife, Either

Bushtits at gradually sloping birdbath

Here in the Pacific Northwest (as well as the interior Northwest, northern Rockies and northern California) we’re experiencing a hot and early summer. Nearly everything’s been premature—most trees leafed out several weeks before they typically do and herbaceous plants popped up ahead of time; those that flower were more than punctual. My raspberries and thimbleberries were three weeks early, and I’m picking apples now that usually ripen several weeks from now. Portland set a record for a dry June and will likely break another this week for the highest number of consecutive days over 90˚.

The winter was pleasantly mild and precipitation was paltry: Snowpack in Oregon was 11% of normal and Washington’s was 16%. If the current drought and dry heat makes us thirsty, we’re not alone. Nearly all of life’s processes require water in one form or another—it’s essential for everything from small insects to birds to bobcats. Of course, areas further south are much more drought stricken, with wildlife emaciated and dehydrated. Some say it will only worsen, due to climate change.IMG_6764

Drought causes many deadly, far-reaching effects for wildlife, including less food and cover, increased vulnerability to predators and diseases, competition with others of their kind, and more conflicts with people as they desperately search for food and water outside their normal range. Although some animals obtain moisture from their prey, they still depend on water in the environment to provide for those they need to eat. Tiny creatures may find enough in dew droplets, but many species require additional water to survive. Birds, for example, need water to drink of course, but also to bathe in to help keep their feathers clean and waterproof—essential for insulation and flight.

Dehydration is dangerous for everyone. If you want to help wild visitors in your yard, below are some quick, easy options. Artificial ponds can be a wonderful addition to larger gardens, but they aren’t quick and easy, so they’re not included here.

Scrub jay takes a drinkBirdbaths: Birdbaths that slope gradually are best because all sizes of visitors can wade in to a safe and comfortable depth. If you already have one that has steep sides, place some flat rocks on one side to create a shallow area. Site birdbaths in open areas, at least 10 feet from any hiding places were domesticated predators could lurk. Use hanging birdbaths whenever possible if predation is a problem in your yard. And keep them as clean as possible: Replace the water every day or two (this will also keep mosquitoes from breeding) and give them a good scrubbing every few weeks, but don’t use bleach.

Mud puddles: Most butterflies and moths (Lepidoptera), as well as some types of insects and birds, require moist soil or sand to obtain essential nutrients. Lepidoptera, for example, “sip” earthy cocktails that contain minerals such as salts which are essential for reproduction. Just the other day I saw a Western tiger swallowtail pressing his proboscis into the recently irrigated soil in a community garden plot. Male Lepidoptera give their significant others an extra little gift of minerals while mating which ensures that the largest number of eggs develop. In nature, this “mud puddling,” as it is called, is done at the edges of streams and other moist places. You can mimic this habitat by filling a large ceramic bowl with sand and burying it part way in your garden. Mix in some salt for males and place some round rocks (for landing and basking) around the edges. And don’t be too quick to pick up moist fallen fruit (like figs, should you have them)—some Lepidoptera species can’t resist such fermenting treats. More on feeding butterflies in a future post!

Moist gravel for bugsPlates of moist gravel: Beneficial insects and other small arthropods will sometimes come to shallow birdbaths, but ground dwellers—like beetles—will appreciate a plate or pie pan filled with clean pebbles or gravel and water, and placed on the ground out of hot sunlight. Just be sure the water doesn’t rise above the gravel so that no one drowns.

It looks like we may be in for a very hot summer throughout most of the Northwest. Providing water in your garden will attract wild visitors and maybe even save lives.

 

© 2015 Eileen M. Stark

To leave a comment, click on blog’s title

Anna’s Hummingbird Babies: From Eggs to Empty Nest

Anna's hummingbird babies, around Day 19

As I wrote last month, we were extremely fortunate to have a little Anna’s hummingbird build her tiny nest — smaller than an espresso cup — in a rhododendron shrub, just steps from a window. In February, binoculars and camera in hand, we watched and photographed as she finished the intricately woven and structurally sound nest, anchored to a branch with strong and stretchy spider silk, lovingly lined with fur, and carefully camouflaged with lichen. On February 20 it appeared that her beautiful nest was complete and incubation of two navy bean-sized eggs had begun. Mama hummingbirds typically sit on their eggs for 14 to 19 days.

About 18 days later, I saw her perched on the edge of her nest, apparently regurgitating a slurry of nectar from nearby native currant flowers and partially digested insects or spiders (high in protein) into her babies. I couldn’t actually see them at that point since the nest was about eight feet off the ground and they were so small. At this early stage she would feed both nestlings (hummingbirds almost always have two), fly off, and come back with more food within 60 seconds or so. After she and the nestlings had been fed adequately, she’d return and stay on the nest awhile since they were nearly naked and in dire need of warmth.

Later that week we saw her offspring for the first time, with their dinosauric heads and just the start of future feathers. Even at this age, still completely helpless and blind, their instincts are strong: They are able to keep their nest clean by wriggling their little bottoms toward the edge of the nest and squirting their poop outside of it.

Anna's hummingbird babies, around Day 7

Anna's hummingbird and one of her babies, around Day 7

 

Later, about ten days after hatching and when the nestlings’ barbs began to look like feathers, Mom no longer stayed on the nest — during the day, anyway — most likely because her babies now had the ability to regulate their own body temperature. I imagine she was also not too keen on having her underside poked by pointy bills!

Ann's hummingbird and her babies, around Day 12

Anna's hummingbird babies, around Day 13

 

We continued to watch her feed them, first pumping food up into her throat, then aiming her long bill into their gaping orange mouths and straight down their throats. She resembled a sewing machine needle as she repetitively pushed food into them, never spilling a drop. Ouch!

Anna's hummingbird feeding her babies, around Day 18

 

References state that Anna’s hummingbirds fledge within 18 to 28 days after hatching. On the morning of what I believe was Day 23, I watched one of them sit on the edge of the nest and flap his/her wings with such gusto that I thought the time had come. A rainstorm came and went, but they remained in the nest, sitting with their bills pointed directly upwards, nearly vertical; occasionally they’d shake off raindrops but maintained their pose. Brave and undaunted, they also endured fairly heavy wind and a short, but pounding, hail storm.

Anna's hummingbird babies, around Day 22

 

On what was probably Day 24, I saw one of them, for the first time, venture out of the nest and onto the branch right next to the nest. Even though the nest was designed to stretch as the nestlings grew, it was getting tight. Surely they are leaving now, I thought!

Anna's hummingbirds babies, around Day 23

 

They left the nest on Day 25. When they took off I was, disappointingly, in the shower at the time. Just before they left I noticed them preening their breast feathers meticulously, no doubt to make themselves more aerodynamic and ready themselves for life on the wing.

Anna's hummingbird babies, around Day 23

 

Mom feeds them for a week or so post fledging, so they are on their own by now. I still look for them in the garden and high in the trees, but it’s hard to say who’s who—fledglings’ bills and tails are shorter than adults’ and they have no red on their throats, but they may almost resemble female adults by now. Reportedly, the siblings may stay together until autumn, and then they separate for good. Have a good life, sweet babies!

Anna's hummingbird babies, around Day 20

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

UPDATE: March 29, 2017
It’s been two years since I wrote the above post. This year a female Anna has again built a nest in the same shrub, although the nest is harder to see as it’s a little higher up and has more leaves partially blocking our view. I’ve watched the nest as best I can, and judging by what looked like pumping (feeding) movements, I believe at least one of her babies hatched on March 6. Photographing them has been very difficult due to the nest position, as well as the plague of unusually cold, wet weather. In the early part of March I watched her as she searched for insects everywhere in the yard and she spent more time away from her nestlings than the mom two years ago did. This made me wonder if she might be having trouble finding protein (in the form of little insects and spiders), which are essential for the babies’ development, as well as her health. Sugar water or flower nectar alone is completely inadequate.

After about 10 days had passed, I could just barely make out a beak in the nest reaching skyward toward Mama, ready with food. I never saw more than one mouth at a time, which I thought to be a little odd, and wondered if both eggs had hatched. At Day 12 my husband, Rick, managed to get some photos of Anna feeding them, and there is evidence of two mouths, although one is in poor focus and looks like it may not be fully open, even though Mama looked ready to deliver. I was relieved to know that there were two hatchlings, but I continued to see her feeding only one at a time; this worried me because two years ago both of her young were highly visible during each feeding (as the photos above show).

A week later, on March 25, Rick was again photographing the nest and grew concerned when he repeatedly saw her feeding only one baby. With his cell phone taped to a stick, he held it horizontally above the nest while Mom was away and managed to get a short video of the nest. I’m very sad to report that there was only one baby present; the other must have died from lack of protein due to the shortage of insects during the non-stop cold weather. I do not know if the mother, sensing that one was weak and knowing she couldn’t feed them both adequately, chose to stop feeding the weak one so that one would survive, or if the baby was too weak to gape and receive food and eventually died. It’s also slightly possible that the baby was stunted from the beginning (possibly due to too small a yolk). It’s impossible to say for sure, but regardless, it was heartbreaking for this animal lover to realize that someone starved to death right outside her house. I do accept that nature can be harsh—especially during the winter—and I’m glad that the baby didn’t die due to direct human disturbance, but this is just another reason to grow native plants that supply drastically more insects than non-native species.

As I write this, the brave little baby that’s endured the cold still sits alone in the tiny nest that should be filled with a brother or sister. Mom no longer stays on the nest, but she still feeds him/her about every 20-30 minutes. Waiting is the hardest part … waiting for the day that s/he feels strong enough to take to the air and discover the world. I hope I get to see that flight, and I hope it’s on a warm, sunny day.

The baby fledged the very next day, which was a fairly warm, dry one. The following day, curiosity got the best of us. Using a ladder, we inspected the abandoned nest since our nosing around wouldn’t distress anyone. Sure enough, there—at the bottom of the little nursery—was the baby who had died, a dried up little body barely an inch long. Since then I’ve noticed a smallish single hummer in my yard on occasion, and once, while I was walking around the back yard with my little cat in my arms, we stopped to watch this particular bird feeding at blueberry blossoms. S/he grew very interested and circled around us, just 18 inches away from our faces! 

Anna’s hummingbirds typically have 2 or 3 broods per year, and there is another Anna’s hummingbird nest now in a neighbor’s small tree close to a stairway that leads to our back yard. I can’t be sure, but I think it is the mama who nested in our yard, doing her best to raise another couple of healthy chicks.   —ES

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

ANOTHER UPDATE: February 18, 2018
New nest! Maybe I ought to just write a fresh post—this seems to be turning into a hummingbird diary!

It’s one year later and the new nest is in my neighbor’s magnolia tree just above their fence on the property line. Rick noticed it on February 10 and thought she might still be constructing it, but on closer inspection it appeared to be finished. The next day, when Mom was off feeding, he put his phone on a stick to take a short video above the nest, and there they were: Two gleaming white eggs that resemble tiny mint candies. Perhaps the mild winter weather we’d been experiencing (with daytime temperatures around 60ºF!) encouraged this early endeavor, but Anna’s often nest very early in California, their historic home.

There had been a nest in the same tree the previous summer, but it was very difficult to view as the tree was fully leafed out. This new nest is in the open due to leaflessness and proximity (near the end of a branch, just above our driveway and recycling bins), so we’ve got a good view. But the sight is bittersweet right now (Feb. 18): Though magnolia flower buds are developing, they provide absolutely no protection for Mom and her nest. Cold, wintery weather is back and I imagine she’s fairly miserable. But I have to remind myself that she’s a tough, stoic little bird, she has the ability to go into torpor at night to conserve heat, and her eggs have not yet hatched. I’m hoping they will stay inside their little life support systems until later this week, when the temperatures will be a bit higher and insects will likely be easier for Mom to find.

February 19: She made it through a cold, snowy night and she’s still on the eggs. The red-flowering currant shrubs haven’t started blooming, so my sugar water feeders are well-stocked and are put outside soon after sunrise (to prevent freezing). Since we don’t know when the eggs were laid, they could hatch anytime between now and the end of the month.

Anna snow

One snowy morning …

 

February 20: Watching from my driveway, I now see her feeding someone, so at least one has hatched. But we’re in the middle of a winter storm that’s brought snow, and temps that will dip into the 20s tonight. I worry because insects and itsy-bitsy spiders are not plentiful when it’s so cold and the most common cause of nestling mortality is lack of protein (as we painfully learned last year). Hopefully Mom will persevere and be able to get both of them fat and sassy. Will keep you posted!

February 23: The nestlings are now at Day 3, and as far as I can tell, they’re doing well. Mom is definitely away from the nest longer than the first time I watched a hummer nest (as much as 7 minutes), but she comes back every couple of minutes during her forages to make sure no predators are near the nest. Standing on a ladder, I can now partially see the babies’ heads as they are fed.
Day 3

 

 
 

March 1: Sadly, my fear has been realized: One of the babies has died. For the past couple of days I’d only been able to see her feed one nestling; yesterday we took a video with a phone taped to a stick and it’s clear that there is now just one alive. Sigh. Anna’s hummingbirds’ historical range is from Baja to San Francisco but they’ve expanded their range north reportedly due to artificial feeders and the planting of nonnatives that bloom when natives have finished. Unfortunately the expansion sometimes has deadly consequences.

The remaining baby looks okay. It’s still quite cold but will warm up a bit soon. The red-flowering currant blossoms should be opening any day now and insects should be easier to find.

March 7: It’s warmed up a bit and the baby is definitely growing. Today his/her eyes are open! Though it’s not very warm, Mom is staying off the nest during the day, but she’s on at night since it’s so cold and the little one hasn’t a sibling to snuggle with.  Day 14 or 15

 

March 8: Today is very windy and rainy but Mom is on the nest most of the time. This weekend will be much better for Baby: warmer, dry, and sunny—just what’s needed.

March 16: Major growth is happening, but I think this baby will be on the nest for another week or more. This is Day 23, a day when many hummers are able to fledge, but since this baby had such a rough start in life, s/he will likely need much more time in the nest. The nights have been quite cold but feathers are filling in.
Day 24

March 23: Baby’s feathers are really filling in and s/he looks softer, rounder. Yesterday, after preening (or perhaps biting at parasites) Baby stretched his/her wings and was almost able to lift off the nest! At nightfall, Baby had to endure a hail storm and I think it rained through most of the night … if only s/he wasn’t stuck in that nest and could find some evergreen shelter during this nasty weather, as older birds do! I keep hoping for some warm spring weather. Even though Baby is now 30 days old, the bill and feathers need to grow more and I estimate that it will be 3 to 4 days before fledging.
Day 30
Day 30

March 25: My heart is heavy with grief today. The stoic little baby who lost his sibling and tolerated so much harsh weather is dead. I believe he died on Friday night during some nasty cold rain and hail. Saturday I saw him hunkered down in the nest to keep warm, or so I thought … while taking photos today I found him in the same position and not moving. What a terrible little life he had, unable to leave the nest during what must have been a nightmare to him. It’s also possible that something happened to Mom, but I suspect the former, since nest mortality is high. We’ll never know. I buried his tiny little body with a sprig of red-flowering currant flowers, something he would have loved. R.I.P sweet little one.

[Addendum: It is two months later, and for the first time I’ve witnessed the feeding of a baby who had apparently left the nest that day. Tiny little “peeps” were heard coming from our fig tree, but I couldn’t locate the baby until Mom swooped in to feed. After Baby was fed she left, but returned about 20 minutes later when the call for food resumed. This went on for the rest of the day, with Baby in the same tree. The same peeps were heard for many days afterwards, but in different trees. Apparently this baby’s sibling also must have died (hummers typically lay two eggs), but s/he looks strong and healthy.]


© 2018 Eileen M. Stark

 
To leave a comment, click on blog’s title

Cedar Waxwing Flocks are Back!

_MG_9122

I had planned to write a different post today, but quickly changed my mind when I caught sight of 100 to 200 cedar waxwings in my Portland yard. Last fall a huge flock was attracted to our two fig trees that were laden with ripening fruit well out of our reach. This year only one fig tree is fruiting, but there’s still a mass of succulent food for their hungry mouths. These birds also love berries and I photographed them on a red-flowering currant shrub (Ribes sanguineum) and Cascade Oregon grape (Mahonia nervosa), two of many PNW native species that support these birds. Situated near our front door, the currant shrub stops people in their tracks while it’s flowering in March, and now it’s a waxwing magnet. I watched as they eagerly picked off the berries and swallowed them whole (pictured, above).

Cedar waxwings are exquisitely beautiful birds—sleek, with silky, shiny, colorful feathers that softly blend together like watercolors. Adults have a somewhat droopy, ragged crest and a debonair black mask, outlined in white, which makes them so alluring and exciting—as in, where have you been all my life? Males have black chins and throats, whereas females’ are slightly duller and juveniles’ are streaked. Tail tips are usually yellow, wider in males and narrower in females and juveniles. In my photo you can just barely make out little reddish, waxy tips on the wing feathers, hence the common name. The function of the secretion is not fully known, although it is likely important in courtship. So dashing!

The Bohemian waxwing is similar but slightly larger, and has grayish feathers on breast and belly, instead of a soft yellow. They also have white and yellow wing patches, which cedar waxwings lack. According to Seattle Audubon Society, Bohemians are a northern species that migrate down to Washington in winter. The cedar waxwings we see are likely year round residents who travel around in search of food. Both species are monogamous and breed in open, wet areas with dead or downed wood, or in woodlands with mature conifers.

Exceptionally gregarious, these birds are often seen in large flocks, especially in autumn. You may hear them before you see them, with their very high-pitched, whistle-like trills. They mainly eat sweet fruit and even feed it to their young after a few days of insectivorous cuisine (like the majority of land birds who feed their babies insects). During breeding season waxwings need more protein and show their expert insect-catching abilities in mid-air, often over water. Insects that live on plants, like scale, are also on their menu. For medium sized, fairly stocky birds (about seven inches in length), they are quite acrobatic and can even hover in place to grab a bit of fruit when a perch isn’t handy.

Waxwings aren’t suffering from habitat loss quite as much as most species, since they can eat increasingly common exotic fruits. However, they “are vulnerable to window collisions as well as being struck by cars as the birds feed on fruiting trees along roadsides,” says the Cornell Lab of Ornithology. But native plants are best for the vast majority of wild species, so to attract waxwings to your Pacific Northwest yard, grow indigenous trees and shrubs that produce small fruits, including serviceberry (Amelanchier alnifolia), madrone (Arbutus menziesii), dogwood (Cornus spp.), western juniper (Juniperus occidentalis), black hawthorn (Crataegus douglasii), honeysuckle (Lonicera ciliosa and L. involucrata), mountain ash (Sorbus sitchensis and S. scopulina), and strawberries (Frageria spp.). Keep your eyes and ears open and look for them in parks, forest edges, open woodlands, and gardens—these beautiful birds could visit your yard, too!

Reference

© 2014 Eileen M. Stark

To leave a comment, please click on the blog’s title